Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

**Electronic Supplementary Information** 

## Ladder-Like Polysilsesquioxane Dielectrics for Organic Field-Effect Transistor Applications

M. Pei,<sup>a,†</sup> A. S. Lee,<sup>b,†</sup> S. S. Hwang<sup>b,\*</sup> and H. Yang<sup>a,\*</sup>

<sup>a</sup>Department of Applied Organic Materials Engineering, Inha University, Incheon 22212,

Korea; <sup>b</sup>Materials Architecturing Research Center, Korea Institute of Science and

Technology, Seoul 02972, Korea

**Corresponding Author** 

\*H. Yang (hcyang@inha.ac.kr); S.S. Hwang (sshwang@kist.re.kr)

<sup>†</sup>M. P. and A. S. L. contributed equally.

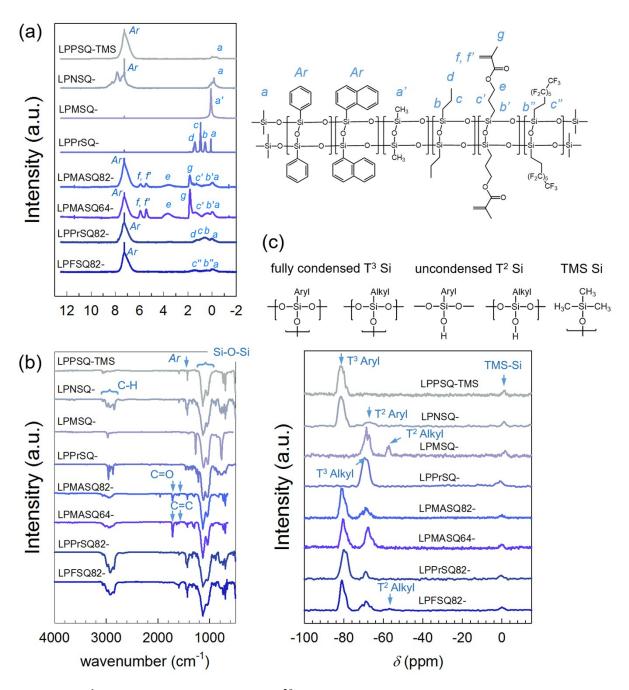



Fig. S1 (a)  $^{1}$ H NMR, (b) FT-IR, and (c)  $^{29}$ Si NMR spectra of LPSQ-TMS series studied in this paper.



Fig. S2 TGA profiles of LPSQ-TMS series studied in this work.

|                                          | LPSQ-TMS treated SiO <sub>2</sub> |        |        |              |                                      |           |          |             | untreated        |
|------------------------------------------|-----------------------------------|--------|--------|--------------|--------------------------------------|-----------|----------|-------------|------------------|
|                                          | LPPSQ-                            | LPM82- | LPM64- | LPMSQ-       | LPPrSQ-                              | LPPrSQ82- | LPFSQ82- | LPNSQ-      | SiO <sub>2</sub> |
|                                          |                                   |        |        | Liquid       | Contact                              |           |          |             |                  |
| H <sub>2</sub> O                         | 6                                 |        |        |              |                                      |           | 0        | <u> </u>    |                  |
| $\theta_{\rm H_{2}O}(^{\circ})$          | 95.7                              | 92.8   | 91.3   | 108.1        | 105.2                                | 97.2      | 113.0    | 99.5        | 39.3             |
| $CH_2I_2$                                |                                   |        |        | -            |                                      |           |          |             |                  |
| $\theta_{\mathrm{CH}_2\mathrm{I}_2}$ (°) | 37.5                              | 45.5   | 53.9   | 75.2         | 71.7                                 | 40.3      | 81.4     | (dissolved) | 46.4             |
|                                          |                                   |        |        | Surface ener | gy ( <i>γ</i> , mJ m <sup>-2</sup> ) |           |          |             |                  |
| non-polar (၇ <sup>d</sup> )              | 41.9                              | 36.2   | 30.2   | 19.9         | 21.6                                 | 40.7      | 16.9     | N/A         | 24.0             |
| oolar (ፇ)                                | 0.10                              | 0.80   | 1.80   | 0.30         | 0.50                                 | 0.05      | 0.20     | N/A         | 33.6             |
| $\gamma (= \gamma^d + \gamma^p)$         | 42.0                              | 37.0   | 32.0   | 20.2         | 22.1                                 | 40.75     | 17.1     | N/A         | 57.6             |

Fig. S3  $\theta$ -based  $\gamma$  values of LPSQ-TMS treated and untreated SiO<sub>2</sub> dielectrics.

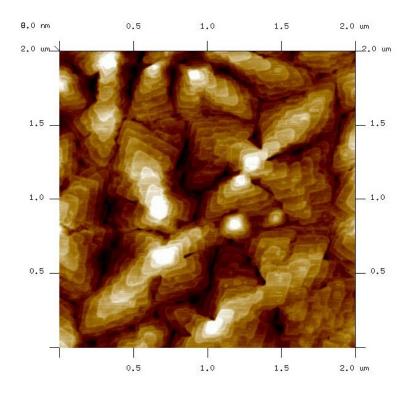



Fig. S4 AFM topography of 20 nm thick pentacene film on the LPMASQ82-TMS treated  $SiO_2$  surface.

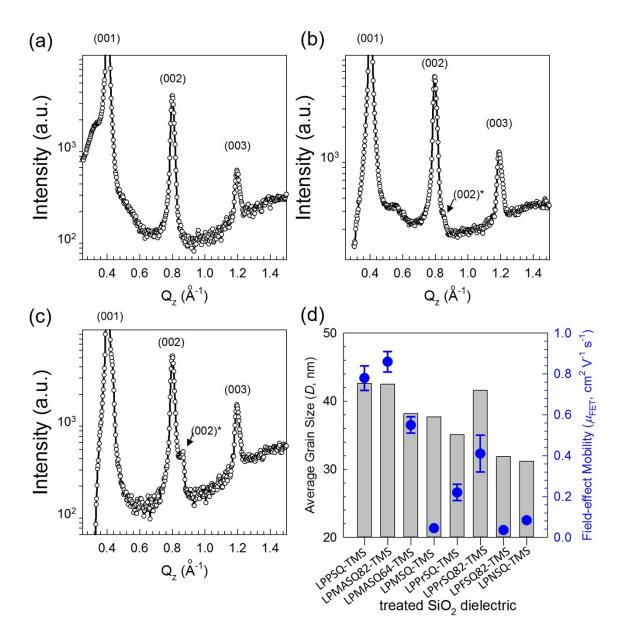



Fig. S5 (a–c) 1D out-of-plane X-ray diffraction profiles extracted along the  $Q_z$  axis from the 2D GIXD patterns of (a) LPMASQ82-, (b) LPPrSQ82-, (c) LPNSQ-TMS treated SiO<sub>2</sub> systems. (d) Variations in *D* and  $\mu_{\text{FET}}$  of 50 nm thick pentacene films on the LPSQ-treated SiO<sub>2</sub> dielectrics.

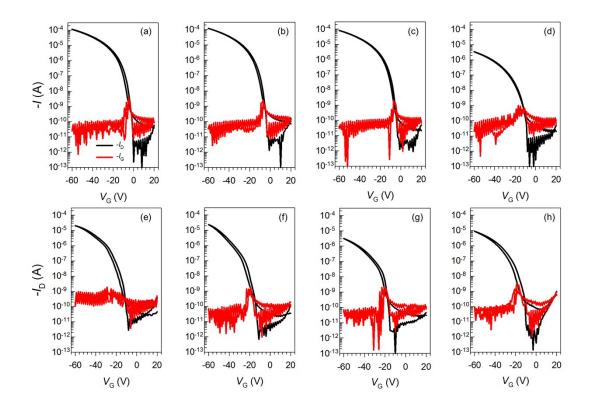



Fig. S6 Typical  $I_D-V_G$  transfer and  $I_G-V_G$  gate leakage curves of pentacene OFETs on the treated SiO<sub>2</sub> dielectrics including: (a) LPPSQ-, (b) LPMASQ82-, (c) LPMASQ64-, (d) LPMSQ-, (e) LPPrSQ-, (f) LPPrSQ82-, (g) LPFSQ-, and (h) LPNSQ-TMS layers.

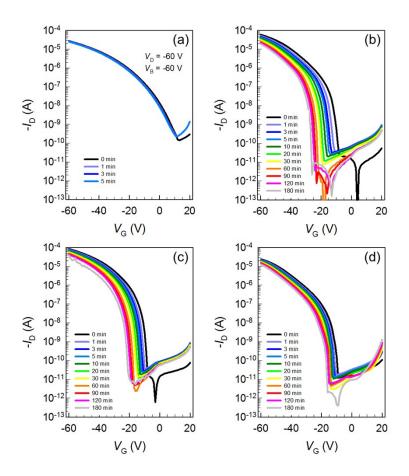



Fig. S7  $I_D-V_G$  transfer curves of 50 nm pentacene OFETs on the (a) untreated and (b–d) LPSQ-TMS treated SiO<sub>2</sub> dielectrics including: (b) LPPSQ-, (c) LPMASQ82-, and (d) LPPrSQ82-, under a sustained gate bias of = -60 V as a function of stress time (*t*).

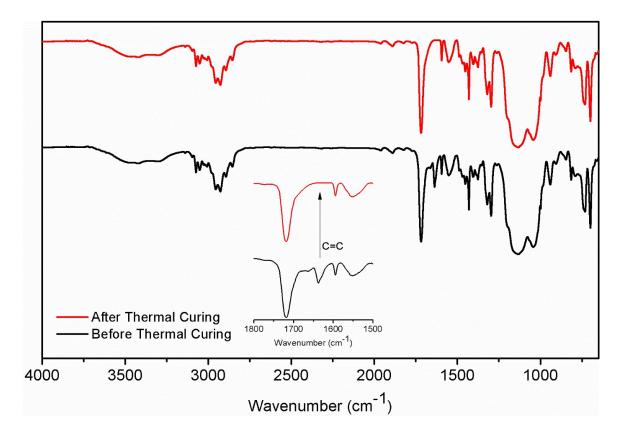



Fig. S8 FT-IR spectra of LPMASQ82-TMS/PMFM (95/5) before and after thermal curing.

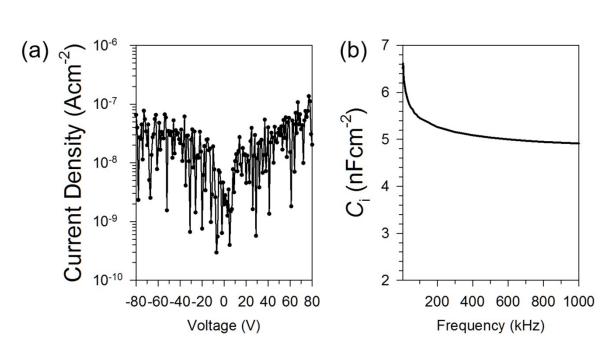



Fig. S9 (a) Current density and (b)  $C_i$  profile of 500 nm thick LPMASQ82-TMS film with  $\varepsilon_r$  of 2.77.

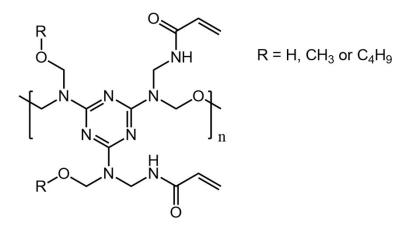



Fig. S10 Chemical structure of poly(melamine-co-formaldehyde), acrylated.