1,4-azaborine as controller of triplet energy, exciton distribution, and aromaticity in [6]cycloparaphenylenes

Jie Wu,^a Yuhe Kan,^{*,b} Zhenhua Xue,^a Jintian Huang,^a Peng Chen,^a Xiaofang Yu,^a Zeyu Guo,^a Zhongmin Su^{*,c}

^a College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia , People's Republic of China

^b Jiangsu Province Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, Jiangsu People's Republic of China

^c Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin, People's Republic of China

Tables and figures

Fig. S1. a. The calculated adiabatic T_1 energies for mono-BN substituted [6]CPP systems, [6]CPP, and [8]CPP by means of the Δ SCF method on the basis of the optimized structures for T_1 and S_0 states. The stable geometries of S_0 and T_1 states were optimized via DFT and unrestricted DFT methods with a varying fraction of HF exchange, respectively. The vertical T_1 energies for seven systems are based on TDA/LC- ω PBE calculation at the S_0 states. **b.** Spin density distribution, the calculated and experimental T_1 energies for [*n*]CPP (*n* = 8, 10, 12).

Fig. S2. Molecular orbital correlation diagram for the five isomeric mono-BN [6]CPP systems.

Fig. S3. Energies of HOMOs and LUMOs for [6]CPP and p-(n)BN-[6]CPPs in the ground states correspond to the HOMO and LUMO energies of *m*CP and Alq3, respectively.

Fig. S4. Bond length deviations between S₀ and T₁ geometries for o-2BN(2)-[6]CPP and p-2BN(2)-

[6]CPP. Atomic label are shown in Fig. S1.

Tables

Table S1 Triplet transition contribution at TDA/LC- ω PBE/6-31G* level at the optimized T₁-state geometries.

Compounds	ω	Triplet transition nature
		(main contribution)
[8]CPP	0.392	M160→M161 (74.20%)
[6]CPP	0.211	M120→M121 (77.40%)
[6]CPP-BN(1)	0.194	M120→M121 (83.72%)
[6]CPP-BN(2)	0.202	M120→M121 (85.73%)
[6]CPP-BN(3)	0.203	M120→M121 (92.71%)
[6]CPP-BN(4)	0.197	M120→M121 (84.74%)
[6]CPP-BN(5)	0.171	M120→M121 (91.91%)

Table S2 NICS $(1)_{ZZ}$ values (Units in ppm) and total induced current density plots for BN-substituted [6]CPPs.

