Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Supporting information for

Ti-doped WO₃ synthesized by a facile wet bath method for improved electrochromism

Yi Zhan,^a Ming Rui Jeol Tan,^a Xing Cheng,^a Wei Ming Alvin Tan,^a Guo Fa Cai,^a Jing Wei Chen,^a Vipin Kumar,^a Shlomo Magdassi,^{b*} Pooi See Lee^{a*}

^a School of Materials Science and Engineering, Nanyang Technological University,

639798, Singapore. *E-mail: pslee@ntu.edu.sg

^bInstitute of Chemistry and the Center for Nanoscience and Nanotechnology,

The Hebrew University of Jerusalem, Jerusalem, 91904, Israel. *E-mail: magdassi@mail.huji.ac.il

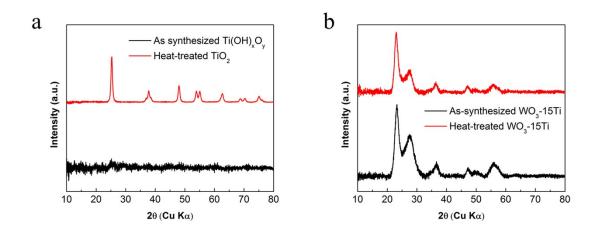


Figure S1. XRD diffractogram comparisons of $Ti(OH)_xO_y$ (a) and WO_3 -15Ti (b) before and after the same heat-treatment.

Amorphous Ti(OH)_xO_y was obtained with the similar synthesis, it was difficult to determine whether there was Ti(OH)_xO_y impurity in the Ti-doped WO₃ sample. WO₃ was doped with the highest Ti(IV) content in the WO₃-15Ti which was calcined at 400 °C for 2 h in the air. No impurity peak was detected in its XRD pattern after the calcination, suggesting that there was no impure titanium compounds formed during synthesis.

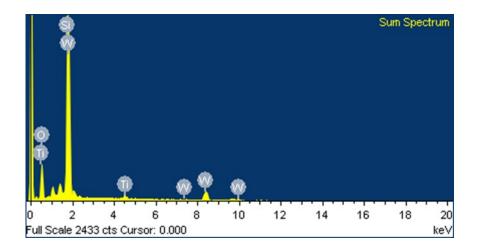


Figure S2. EDS mapping analysis of WO₃-10Ti film

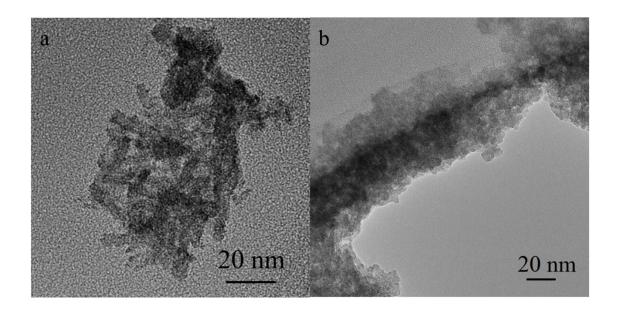


Figure S3. TEM images of WO₃-5Ti (a) and -15Ti (b)

Table S1. Parameters of WO₃ samples, including crystallite size, BET surface area, atomic ratio and the diffusion coefficient

Material	Crystallite size (nm)	BET surface area (m ² g ⁻¹)	Ti/(Ti+W) (at. %)	The diffusion coefficient <i>D</i> (cm ² s ⁻¹)
WO_3	32.9	34.9378	0	6.76011E-9
WO ₃ -1Ti	28.2	54.5812	0.8	5.5733E-9
WO ₃ -5Ti	15.6	86.8863	5.2	4.70695E-9
WO₃-10Ti	10.8	85.8344	8.4	4.41936E-9
WO ₃ -15Ti	8.9	84.1097	12.9	2.47947E-9

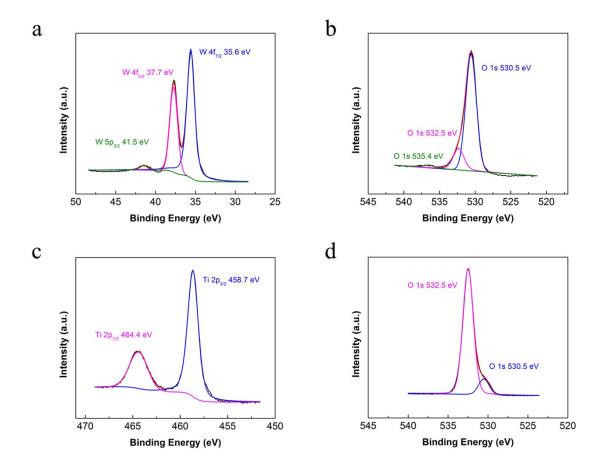


Figure S4. The XPS spectra of the main elements for WO_3 (a and b) and $Ti(OH)_xO_y$ (c and d)

Table S2. Literature survey of WO₃ with the best CE for electrochromism at the wavelength of 633 nm

Material	ΔT(%)	CE (cm ² C ⁻¹)	Reference
Ti-doped WO ₃ nanocrystals	67.6	106.6	This work
WO ₃ nanoparticles on the silver grid/PEDOT:PSS hybrid film	81.9	124.5	Adv. Energy Mater., 2016, 6, 1501882
WO₃·2H₂O thin film	53.8	107.8	J. Mater. Chem., 2012, 22, 19904
WO ₃ nanowire array film	58	102.8	J. Mater. Chem., 2011, 21, 5492

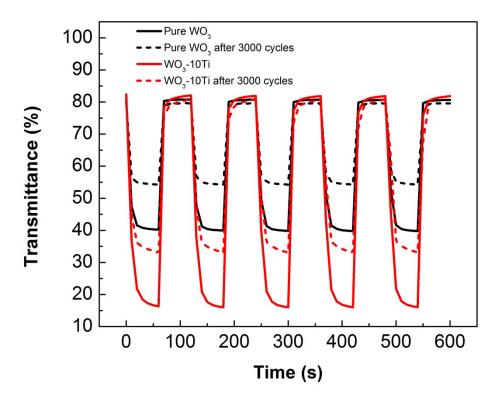


Figure S5. The optical response of pure WO₃ and WO₃-10Ti before and after 3000 cycles operation