Supplemental Information for

Sustainable approach for large area transfer of graphene and recycle of the copper substrate

Michael Cai Wang^{1*}, Widianto Moestopo¹, Satoshi Takekuma², Shama Farabi Barna¹, Richard Haasch³, SungWoo Nam^{1,2*}

¹Department of Mechanical Science and Engineering, ²Department of Materials Science and Engineering, ³Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States.

E-mails: cwang99@illinois.edu, swnam@illinois.edu

Fig. S1. Optical microscope image of bubbling-damaged graphene with voids transferred onto SiO₂ via bubbling-delamination in 0.1M NaCl electrolyte.

Fig. S2. (a) Partially delaminated ethyl cellulose (EC)/graphene/copper sample showing interface between the (b) oxidized cuprous oxide surfaces (top) where the EC/graphene still remain and (c) the exposed/reduced native copper foil substrate (bottom) where the EC/graphene has been delaminated.

Fig. S3. (a-d) XPS characterization of as-synthesized graphene on copper foil with Cu₂O interlayer due to ambient oxidation. The (c) Cu LMM peak position at less than 917 eV and (d) the weak Cu^{2+} satellites and narrow Cu $2p_{1/2}$ and Cu $2p_{3/2}$ peaks suggest that the oxide layer is predominantly Cu₂O rather than CuO.

Fig. S4. (a, b) Schematic renderings and (c, d) photos of pressured gradual immersion device for graphene delamination.

Fig. S5. XPS characterizations of the C 1s peak indicative of graphene and adventitious carbon on the surface of SiO₂ wafer for graphene samples transferred via (a) sodium persulphate chemically etched copper, (b) 0.1M NaCl delamination, (c) CO₂ delamination carbonated with soda maker, and (d) CO₂ delamination carbonated with dry ice.

Fig. S6. AFM morphology of oxidized (Cu₂O, left) and reduced (metallic copper, right) copper substrate surfaces, before and after electrochemical reduction in carbonic acid, respectively. Averaged across five random areas of 25um^2 each, the Cu₂O measured a RMS roughness of 6.12±0.03nm whereas the reduced metallic copper surface measured 2.88±0.06nm.

Solutions	Conductivity (µS)
Fresh DI water	0.1
Fresh DI water + vigorously shaken 20 times	0.7
0.1M NaCl in DI water	9650
DI water + soda maker	72.8
DI water + dry ice	71.9
DI water + dry ice + outgassed 48 hours	33.6
DI water + dry ice + vigorously shaken 20 times	20.9
DI water + dry ice + sonicated 10 minutes	41.2
DI water + dry ice + vigorously shaken 20 times + sonicated 10 minutes	19.8

Table S1. Solution conductivities.

Authors	Electrolyte	Applied voltage (cathodic)	Reference
Y. Wang et al.	K ₂ S ₂ O ₈ (0.05mM)	5V	1
L. Gao et al.	NaOH (1M)	5-15V	2
T. Ciuk et al.	NaCl/KCl (2mM-2M)	4-100V	3
X. Wang et al.	Na ₂ SO ₄ (0.5M)	15V	4
C. Cherian et al.	NaCl (0.5M)	2.6V	5
Z. Zhan et al.	NaOH (0.2M)	8V	6
This work	Carbonic acid	7-10V	This work

Table S2. Electrolytes used and applied voltages for various graphene delamination techniques.

References

- Y. Wang, Y. Zheng, X. Xu, E. Dubuisson, Q. Bao, J. Lu and K. P. Loh, ACS Nano, 2011, 5, 9927–33.
- L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.-P. Ma, Z. Zhang, Q. Fu, L.-M. Peng, X. Bao and H.-M. Cheng, *Nature Communications*, 2012, **3**, 699.
- 3 T. Ciuk, I. Pasternak, A. Krajewska, J. Sobieski, P. Caban, J. Szmidt and W. Strupinski, *The Journal of Physical Chemistry C*, 2013, **117**, 20833–20837.
- 4 X. Wang, L. Tao, Y. Hao, Z. Liu, H. Chou, I. Kholmanov, S. Chen, C. Tan, N. Jayant, Q. Yu, D. Akinwande and R. S. Ruoff, *Small*, 2014, **10**, 694–698.
- 5 C. T. Cherian, F. Giustiniano, I. Martin-Fernandez, H. Andersen, J. Balakrishnan and B. Özyilmaz, *Small*, 2015, **11**, 189–194.
- 6 Z. Zhan, J. Sun, L. Liu, E. Wang, Y. Cao, N. Lindvall, G. Skoblin, A. Yurgens, K. S. Novoselov, S. Roth, A. K. Geim, H. A. Wu, A. K. Geim, J.-H. Ahn, B. H. Hong and S. Iijima, J. Mater. Chem. C, 2015, 3, 8634–8641.