Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Supporting information

A Versatile Approach to Different Colored Photonic Films Generated

from Block Copolymers and Their Conversion into Polymer-Grafted

Nanoplatelets

Yucheng Huang, Yang Zheng, Julia Pribyl, and Brian C. Benicewicz*

Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208,

United States

*E-mail: benice@sc.edu

Content

Fig. S1 ¹H NMR (CDCl₃, 300MHz) of PTEPM₆₆₆ polymer solution

Fig. S2 ¹H NMR (CDCl₃, 300MHz) of PTEPM₆₆₆-b-PTEPM₅₅₃ block copolymer

Fig. S3 GPC curves of PTEPM₆₆₆ and PTEPM₆₆₆-b-PSMA₅₅₃

Fig. S4 FT-IR spectra of PTEPM₆₆₆-b-PSMA₅₅₃ and PSMA₅₅₃-g-SiO₂

Fig. S5 TGA of PSMA₅₅₃-g-SiO₂

Fig. S6 Transmission spectra of films immersed in solvents with different time. (a) $PTEPM_{390}$ -*b*-PSMA₅₅₃ film in EtOH; (b) $PSMA_{353}$ -*g*-SiO₂ film in THF

Fig. S7 ESAXS of PSMA₅₅₃-*g*-SiO₂ dry film and film in ethanol.

Fig. S8 ESAXS of PSMA₇₅₀-*b*-PSMA₄₇₃ film formed by rapid THF evaporation before and after thermal annealing.

Fig. S9 DSC PTEPM₆₆₆-*b*-PSMA₅₅₃ and PSMA₅₅₃-*g*-SiO₂

Fig. S10 ¹H NMR (CDCl₃, 400MHz) of PTEPM₃₉₀ polymer solution

Fig. S11 ¹H NMR (CDCl₃, 400MHz) of PTEPM₃₉₀-*b*-PTEPM₃₅₃ block copolymer

Fig. S12 GPC curves of PTEPM₃₉₀ and PTEPM₃₉₀-b-PSMA₃₅₃

Fig. S1 ¹H NMR (CDCl₃, 300MHz) of PTEPM₆₆₆ polymer solution

The monomer conversion p was calculated by:

$$p = \frac{I(b + b') - I(a)}{I(b + b')}, I \text{ is the integration of peak}$$

Fig. S2 ¹H NMR (CDCl₃, 300M) of PTEPM₆₆₆-*b*-PTEPM₅₅₃ block copolymer

The ratio of degree of polymerization (DP) of TEPM (m) and DP of SMA (n) can be calculated by:

 $\frac{m}{n} = \frac{I(a)}{I(b,c,d) - 4I(a)}$, I is the integration of peak

Fig. S3 GPC curves of PTEPM₆₆₆ and PTEPM₆₆₆-b-PSMA₅₅₃

Fig. S4 FT-IR spectra of PTEPM₆₆₆-*b*-PSMA₅₅₃ and PSMA₅₅₃-*g*-SiO₂

Fig. S5 TGA of PSMA₅₅₃-g-SiO₂

Fig. S6 Transmission spectra of films immersed in solvents with different time. (a) PTEPM₃₉₀-b-

PSMA₅₅₃ film in EtOH; (b) PSMA₃₅₃-g-SiO₂ film in THF.

Fig. S7 ESAXS of PSMA₅₅₃-*g*-SiO₂ dry film and film in ethanol.

Fig. S8 ESAXS of PSMA750-b-PSMA473 film formed by rapid THF evaporation before and after

thermal annealing.

Fig. S9 DSC PTEPM₆₆₆-*b*-PSMA₅₅₃ and PSMA₅₅₃-*g*-SiO₂

Fig. S10 ¹H NMR (CDCl₃, 400MHz) of PTEPM₃₉₀ polymer solution

Fig. S11 ¹H NMR (CDCl₃, 400MHz) of PTEPM₃₉₀-*b*-PTEPM₃₅₃ block copolymer

Fig. S12 GPC curves of PTEPM₃₉₀ and PTEPM₃₉₀-*b*-PSMA₃₅₃