Supporting information

Inverting Substitution Patterns on Amphiphilic Cyclodextrins Induces Unprecedented Formation of Hexagonal Columnar Superstructures

Pier-Luc Champagne,^[a] David Ester,^[b] Michael Zeeman^[b], Carson Zellman,^[b] Vance E. Williams,^[b]* Chang-Chun Ling^[a]*

^aAlberta Glycomics Centre, Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4 Canada

^bDepartment of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6 Canada.

*Email: <u>vancew@sfu.ca</u>; <u>ccling@ucalgary.ca</u>

Table of Contents

A: NMR spectra of synthesized compounds	3
Figure S1 ¹ H NMR spectra 400 MHz of compound 8 in CDCl ₃	3
Figure S2 ¹³ C DEPT-Q NMR spectra 400 MHz of compound 8 in CDCl ₃	3
Figure S3. ¹ H NMR spectra 400 MHz of compound 13 in CDCl ₃	4
Figure S4. ¹ H NMR spectra 400 MHz of compound 14 in CDCl ₃	4
Figure S5. ¹ H NMR spectra 400 MHz of compound 9 in CDCl ₃	5
Figure S6. ¹³ C DEPT-Q NMR spectra 400 MHz of compound 9 in CDCl ₃	5
Figure S7. ¹ H ¹ H 2D COSY NMR spectra 9 400 MHZ in CDCl ₃	6
Figure S8. ¹ H ¹³ C 2D HSQC 400 MHz NMR specta of 9 400 MHZ in CDCl ₃	6
Figure S9. ¹ H NMR spectra 400 MHz of 10 in CDCl ₃	7
Figure S10. ¹³ C DEPT-Q NMR spectra 101 MHz of 10 in CDCl ₃	7
Figure S11. ¹ H ¹ H 2D COSY NMR spectra of 10 in CDCl ₃	8
Figure S12. ¹ H ¹³ C 2D HSQC 400 MHz NMR spectra of 10 in CDCl ₃	8
Figure S13. ¹ H NMR spectra 400 MHz of compound 4 in CDCl ₃	9

Figure S14. ¹³ C DEPT-Q NMR spectra 101 MHz of compound 4 in CDCl ₃	9
Figure S15. ¹ H ¹ H 2D COSY NMR spectra of compound 4 in CDCl ₃	10
Figure S16. ¹ H ¹³ C 2D HSQC 400 MHz NMR spectra of compound 4 in CDCl ₃	10
Figure S17. ¹ H NMR spectra 400 MHz of compound 5 in CDCl ₃	11
Figure S18. ¹³ C DEPT-Q NMR spectra 101 MHz of compound 5 in CDCl ₃	11
Figure S19. ¹ H ¹ H 2D COSY NMR spectra of compound 5 in CDCl ₃	12
Figure S20. ¹ H ¹³ C 2D HSQC 400 MHz NMR spectra of compound 5 in CDCl ₃	12
B: Thermogravimetric Analysis	13
Figure S21. Thermogravimetric analysis of compound 4	13
Figure S22. Thermogravimetric analysis of compound 5	13
C: X-ray Diffraction Analysis	14
Table S1. XRD data for the compounds 4 and 5	14
Figure S23. XRD spectra of β -CD-4 at 25°C	15
Figure S24. XRD spectra of β -CD-4 at 100°C	15
Figure S25. XRD spectra of β -CD-4 at 140°C	16
Figure S26. XRD spectra of β -CD-5 at 25°C	16
Figure S27. XRD spectra of β -CD-5 at 100°C	17
Figure S28. XRD spectra of β -CD-5 at 275°C	17
D: Differential Scanning Calorimetry Analysis	
Table S2 Phase transitions of β -CD-4 and 5 recorded by DSC.	
Figure S30. Differential scanning calorimetry thermogram of β-CD-4	
Figure S31 . Differential scanning calorimetry thermogram of β-CD-5	19
E: Polarized Optical Microscope Pictures	
Polarized optical microscope image of β-CD-4	
Polarized optical microscope image of β -CD-5	
F: Computational studies.	23
Figure S37. Structure of β -CD-4 before (a) and after (b) optimization	23
Figure S38. Structure of β -CD-5 before (a) and after (b) optimization	24

A: NMR spectra of synthesized compounds

Figure S1. ¹H NMR spectra 400 MHz of 1-azidoctadecane (8) in CDCl₃

Figure S2. ¹³C DEPT-Q NMR spectra 400 MHz of 1-azidoctadecane (8) in CDCl₃

Figure S3. ¹H NMR spectra 400 MHz of 2-(2-propargylethoxy)ethyl acetate (13) in CDCl₃

Figure S4. ¹H NMR spectra 400 MHz of (2-(2-(2-propargylethoxy)ethoxy)ethyl acetate (14) in CDCl₃)

Figure S5. ¹H NMR spectra 400 MHz of per-2,3-di-O-(1-octadecyl-1*H*-1,2,3-triazol-4-yl)methyl-6-*O*-mesyl- β -cyclodextrin (9) in CDCl₃

Figure S6. ¹³C DEPT-Q NMR 101 MHz spectra of per-2,3-di-O-(1-octadecyl-1*H*-1,2,3-triazol-4-yl)methyl-6-*O*-mesyl- β -cyclodextrin (9) in CDCl₃

Figure S7. ¹H ¹H 2D COSY NMR spectra of per-2,3-di-O-(1-octadecyl-1*H*-1,2,3-triazol-4-yl)methyl-6-*O*-mesyl- β -cyclodextrin (9) 400 MHZ in CDCl₃

Figure S8. ¹H ¹³C 2D HSQC 400 MHz NMR specta of per-2,3-di-O-(1-octadecyl-1*H*-1,2,3-triazol-4-yl)methyl-6-*O*-mesyl- β -cyclodextrin (9) 400 MHZ in CDCl₃

Figure S9. ¹H NMR spectra 400 MHz of per-6-azido-6-deoxy-2,3-di-O-(1-octadecyl-1H-1,2,3-triazol-4-yl)methyl- β -cyclodextrin (10) in CDCl₃

Figure S10. ¹³C DEPT-Q NMR spectra 101 MHz of per-6-azido-6-deoxy-2,3-di-*O*-(1-octadecyl-1*H*-1,2,3-triazol-4-yl)methyl-β-cyclodextrin (**10**) in CDCl₃

Figure S11. ¹H ¹H 2D COSY NMR spectra of per-6-azido-6-deoxy-2,3-di-O-(1-octadecyl-1H-1,2,3-triazol-4-yl)methyl- β -cyclodextrin (10) in CDCl₃

Figure S12. ¹H ¹³C 2D HSQC 400 MHz NMR spectra of per-6-azido-6-deoxy-2,3-di-O-(1-octadecyl-1H-1,2,3-triazol-4-yl)methyl- β -cyclodextrin (**10**) in CDCl₃

Figure S13. ¹H NMR spectra 400 MHz of compound (4) in CDCl₃

Figure S14. ¹³C NMR DEPT-Q spectra 101 MHz of compound (4) in CDCl₃

Figure S15. ¹H ¹H 2D COSY NMR spectra of compound (4) in CDCl₃

Figure S16. ¹H ¹³C 2D HSQC 400 MHz NMR spectra of compound (4) in CDCl₃

Figure S17. ¹H NMR spectra 400 MHz of compound (5) in CDCl₃

Figure S18. ¹³C DEPT-Q NMR spectra 101 MHz of compound (4) in CDCl₃

Figure S19. ${}^{1}H$ ${}^{1}H$ 2D COSY NMR spectra of compound (5) in CDCl₃

Figure S20. 1 H 13 C 2D HSQC 400 MHz NMR spectra of compound (5) in CDCl₃

B: Thermogravimetric Analysis

Figure S21.Thermogravimetric analysis of compound 4 (2°C/min)

Figure S22.Thermogravimetric analysis of compound 5 (10°C/min)

C: X-ray Diffraction Analysis

Table S1. XRD data for the compounds studied, including comparison of experimentally observed d-spacings and calculated values based on $\frac{1}{d^2} = \frac{4}{3} \frac{(h^2 + hk + k^2)}{a^2} + \frac{l^2}{c^2}$. PLC-M-14 is compound **4**; PLC-M-19 is compound **5**.

Compound	Temperature (°C)	Phase (a/Å)	d-spacing, observed (Å)	d-spacing, calculated (Å)	Miller indices
PLC-M-14	25	Col _h (66.6)	57.7	57.7	d ₁₀₀
			32.3	33.3	d ₁₁₀
			28.4	28.8	d ₂₀₀
			20.9	21.8	d ₂₁₀
			4.13		alkyl halo
	100	Col _h (61.7)	53.5	53.5	d ₁₀₀
			30.5	30.9	d ₁₁₀
			26.8	26.7	d ₂₀₀
			20.2	20.2	d ₂₁₀
			4.72		alkyl halo
	175	isotropic	48.7		
			29.5		
			4.79		alkyl halo
PLC-M-19	25	Col _h (62.5)	54.1	54.1	d ₁₀₀
			30.7	31.3	d ₁₁₀
			27.3	27.1	d ₂₀₀
			20.0	20.5	d ₂₁₀
			4.13		alkyl halo
	100	Col _h (58.9)	51.0	51.0	d ₁₀₀
			29.3	29.4	d ₁₁₀
			25.9	25.5	d ₂₀₀
			19.3	19.3	d ₂₁₀
			4.75		alkyl halo
	140	isotropic	48.2		
			31.4		
			4.76		alkyl halo

Figure S23. XRD spectra of $\beta\text{-CD-4}$ at 25°C

Figure S24. XRD spectra of β -CD-4 at 100°C

Figure S25. XRD spectra of β -CD-4 at 140°C

Figure S26. XRD spectra of β -CD-5 at 25°C

Figure S27. XRD spectra of β-CD-5 at 100°C

Figure S28. XRD spectra of β -CD-5 at 275°C

D: Differential Scanning Calorimetry Analysis

Compound	1 st Phase Transition,	2 nd Phase Transition,
	heating/cooling	heating/cooling
PLC-M-14	51.0 °C (30.6 J/g)/ 38.1 °C (28.0 J/g)	141.9 °C (0.72 J/g)/ 138.9 °C (0.77 J/g)
PLC-M-19	48.4 °C (26.8 J/g)/ 36.1 °C (23.5 J/g)	126.8 °C (0.34 J/g)/ 123.9 °C (0.20 J/g)

Table S2. Phase transitions of β -CD-4 and 5 recorded by DSC

Figure S29. Differential scanning calorimetry thermogram of β -CD-4 (scan rate 10°C/min, with one minute isothermal at the end points of the temperature range).

Figure S30. Differential scanning calorimetry thermogram of β -CD-5 (scan rate 10°C/min, with one minute isothermal at the end points of the temperature range).

E: Polarized Optical Microscope Pictures

Figure S31.Polarized optical microscope image of β -CD-4.

Figure S32. Polarized optical microscope image of β -CD-4.

Figure S33.Polarized optical microscope image of $\beta\text{-CD-5.}$

Figure S34.Polarized optical microscope image of β -CD-5.

Figure S35.Polarized optical microscope image of β -CD-5.

Figure S36.Polarized optical microscope image of β -CD-5 after clearing point.

F: Computational Studies

Figure S37. Structure of β -CD-4 before (a) and after (b) optimization..

Figure S38. Structure of β -CD-5 before (a) and after (b) optimization.