Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

Temperature-Dependent Charge Transport in Solution-Processed Perovskite Solar Cells with Tunable Trap Concentration and Charge Recombination

Xuning Zhang, Shiqing Bi, Jiyu Zhou, Shuai You, Huiqiong Zhou*, Yuan Zhang*, and Zhiyong Tang

X. Zhang, J. Zhou, Prof. Y. Zhang Heeger Beijing Research and Development Center, School of Chemistry Beihang University, Beijing 100191, P. R. China Email: <u>yuanzhang@buaa.edu.cn</u>

S. You, Dr. S. Bi, Prof. H. Zhou, Prof. Z. Tang, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing 100190, P. R. China Email: <u>zhouhq@nanoctr.cn</u>

Figure S1. (a)-(c) Temperature-dependent current density versus voltage characteristics in semilogarithm scale of MAPbI₃ hole-only devices with various L scanned in the downward direction.

Figure S2. Steady-state photoluminescence spectroscopy of MAPbI₃ films with different L.

Table S1. MAPbI₃ solar cell parameters measured under standard AM 1.5 G with various film thicknesses L controlled by solution concentration. The data were collected in the downward scan (bias from positive to negative).

L (nm)	$V_{\rm oc}$ (V)	$J_{\rm sc}~({\rm mA/cm^2})$	FF	PCE (%)
450	0.98	17.47	0.72	12.3
550	0.92	14.20	0.77	10.0
680	0.88	11.94	0.78	8.2

Table S2. Fitting parameters using bi-exponential model for photoluminescence decay kinetics measured on MAPbI₃ films with various L.

L (nm)	$ au_1(s)$	A_1	$ au_2$ (s)	A_2
450	4.42×10 ⁻⁸	20.18%	3.97×10 ⁻⁷	79.82%
550	5.14×10 ⁻⁸	16.68%	4.02×10^{-7}	83.32%
680	5.50×10 ⁻⁸	14.73%	4.45×10 ⁻⁷	85.27%