Electronic Supplementary Information

Development of Potential Optical Thermometric Material through Photoluminescence of Pr³⁺ in La₂MgTiO₆

Rui Shi^a, Litian Lin^a, Pieter Dorenbos^b, Hongbin Liang^{a,*}

 ^a MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
^b Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands

* E-mail: cesbin@mail.sysu.edu.cn

^{*}To whom correspondence should be addressed.

Part A. The details of samples preparation and measurements

Part B. Tables

Table S1 Refined unit cell parameters and refined positions of all atoms of La₂MgTiO₆.

Table S2 Interatomic distances between La/Ti(Mg) and O atoms in La₂MgTiO₆.

Part C. Figures

Figure S1. The FT - IR spectra of host compound and (La_{0.95}Pr_{0.05})₂MgTiO₆ samples at RT.

Figure S2. Decay curves of $Pr^{3+} {}^{3}P_{0}$ and ${}^{1}D_{2}$ emissions in $(La_{0.9975}Pr_{0.0025})_{2}MgTiO_{6}$ under 490 nm excitation at RT.

Figure S3. Decay curves of $Pr^{3+} {}^{3}P_{0}$ and ${}^{1}D_{2}$ emissions in $(La_{0.9975}Pr_{0.0025})_{2}MgTiO_{6}$ under 350 nm excitation at different temperatures.

Part A. The details of sample preparation and measurements

A series of Pr^{3+} doped La₂MgTiO₆ was prepared by a high temperature solid-state reaction route using raw materials La₂O₃ (99.99%), Mg(OH)₂·4MgCO₃·6H₂O (99%), TiO₂ (99.99%), and Pr₆O₁₁ (99.99%). According to the nominal chemical formulas (La_{1-x}Pr_x)₂MgTiO₆ (x = 0, 0.0025, 0.005, 0.0075, 0.01, 0.02, 0.02, 0.05), the stoichiometric amount of raw materials was ground thoroughly in an agate mortar and then heated to 1573 K in 6 h and kept at this temperature for reaction about 10 h in air atmosphere. Finally, the samples were gradually cooled down to room temperature (RT) and ground into powder.

X-ray powder diffraction using Cu K α radiation ($\lambda = 0.15405$ nm) on a BRUKER D8 ADVANCE powder diffractometer was adopted to examine the phase purity of all final samples at RT. The data were collected with the scanning speed 10°·min⁻¹ and the scanning angle range 10°-70°. High quality XRD data for Rietveld refinement were collected over a scanning angle range from 5° to 105°. The medium-low temperature XRD data were recorded using an Anton Paar TTK 450 temperature controlling unit with liquid nitrogen flow cooling.

The Fourier transform infrared (FT-IR) spectra were measured by a Nicolet 6700-FTIR spectrometer with OMNIC software. The UV-vis diffuse reflectance spectra were collected through a Cary 5000 UV-vis-NIR spectrophotometer equipped with a double out-of-plane Littrow monochromator using BaSO₄ as a standard reference.

An Edinburgh FLS 920 combined fluorescence lifetime and steady state spectrometer was used to measure the UV excitation/emission spectra and the luminescence decay curves. A 450W Xe900 lamp was used as the excitation source for steady-state spectra, and that for luminescence decay was a 60W μ F flash lamp with a pulse width of 1.5-3 μ s and pulse rate of 50 Hz.

Part B. Tables

Table S1 Refined unit cell parameters and refined positions of all atoms of La₂MgTiO₆

Atom	x	У	Z	Occpancy
Lal	0.9991	0.0215	1/4	1
Ti1	0	1/2	0	0.5
Mg1	0	1/2	0	0.5
01	0.0730	0.4847	1/4	1
O2	0.7152	0.2866	0.0376	1

Symmetry: Orthorhombic; Space Group: *Pbcm* (62); Cell parameters: a = 5.5632(3) Å; b =5.5575(3) Å; c = 7.8534(3) Å; V = 242.81(2) Å³

Table S2 Interatomic distances between La/Ti(Mg) and O atoms in La₂MgTiO₆

Bond	Distance (Å)	Bond	Distance (Å)
La1-O1	2.3889	Ti1/Mg1-O1	2.0067
La1-O1	2.6067	Ti1/Mg1-O1	2.0067
La1-O1	3.0115	Ti1/Mg1-O2	2.0010
La1-O1	3.1896	Ti1/Mg1-O2	2.0010
La1-O2	2.4308	Ti1/Mg1-O2	2.0143
La1-O2	2.4308	Ti1/Mg1-O2	2.0143
La1-O2	2.7291		
La1-O2	2.7291		
La1-O2	2.7718		
La1-O2	2.7718		
La1-O2	3.2494		
La1-O2	3.2494		

Part C. Figures

Figure S1 The FT-IR spectra of host compound and $(La_{0.95}Pr_{0.05})_2MgTiO_6$ samples at RT.

Figure S2 Decay curves of $Pr^{3+3}P_0$ and ${}^{1}D_2$ emissions in $(La_{0.9975}Pr_{0.0025})_2MgTiO_6$ under 450 nm excitation at RT.

Figure S3 Decay curves of $Pr^{3+} {}^{3}P_{0}$ and ${}^{1}D_{2}$ emissions in $(La_{0.9975}Pr_{0.0025})_{2}MgTiO_{6}$ under 350 nm excitation at different temperatures.