Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Highly-Efficient Solid-State Emissions of the Anthracene-o-Carborane Dyads with

Various Substituents and Their Thermochromic Luminescent Properties

Hirofumi Naito¹, Kenta Nishino¹, Yasuhiro Morisaki^{1,2}, Kazuo Tanaka¹, and Yoshiki

Chujo1*

¹Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

²Present address: Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan

*E-mail: chujo@chujo.synchem.kyoto-u.ac.jp

Experimental

General. ¹H, ¹³C, and ¹¹B NMR spectra were recorded on a JEOL JNM-EX400 instrument at 400, 100, and 128 MHz, respectively. The ¹H and ¹³C chemical shift values were expressed relative to Me₄Si as an internal standard. The ¹¹B chemical shift values were expressed relative to BF₃·Et₂O as an external standard. High-resolution mass spectra (HRMS) were obtained on a Thermo Fisher Scientific EXACTIVE spectrometer for atmospheric pressure chemical ionization (APCI). Analytical thin-layer chromatography (TLC) was performed with silica gel 60 Merck F254 plates. Column chromatography was performed with Wakogel C-300 silica gel. UV-vis absorption spectra were obtained on a SHIMADZU UV3600 spectrophotometer. Photoluminescence (PL) spectra were obtained on a Horiba FluoroMax-4 luminescence spectrometer; absolute PL quantum efficiencies (Φ_{PL}) were determined using a Horiba FL-3018 Integrating Sphere. Fluorescence lifetime measurement was performed on a Horiba FluoreCube spectrofluorometer system; excitation was carried out using a UV diode laser (NanoLED 375 nm). Variable temperature solid-state PL spectra were obtained on an Ocean Optics USB 4000 and recorded on a Cimarec[™] Digital Stirring Hotplate. Cyclic voltammetry (CV) was carried out on a BAS CV-50W electrochemical analyzer in DMF containing 0.1 M of sample and 0.1 M of Bu₄NClO₄ with a glassy carbon working electrode, a Pt counter electrode, a Ag/AgCl (Ag/Ag+) reference electrode, and a ferrocene/ferrocenium external reference. X-Ray diffraction (XRD) data were obtained on a Rigaku MiniFlex diffractometer using CuK α radiation in a range of $2 \le 2\theta \le 50^\circ$ at intervals of 0.01° at a scanning rate of 0.25° min⁻¹.

Materials. All synthetic procedures were performed under Ar atmosphere. Diethyl ether (Et_2O) and tetrahydrofuran (THF) were purified by passage through purification column under Ar pressure. 1,2-Dimethoxyethane (DME) and diisopropylamine (*i*-Pr₂NH) were

purified by distillation under Ar pressure. *n*-BuLi in hexane, CuCl, pyridine, $Pd(PPh_3)_2Cl_2$, CuI, ethynylbenzene, decaborane ($B_{10}H_{14}$), AgNO₃, acetonitrile (MeCN), toluene, iodomethane (MeI), and trimethylsilyl chloride (TMSCl) were obtained commercially and used without purification. 9-(Phenylethynyl)anthracene and 1-(9-anthracenyl)-*o*-carborane (1) were synthesized and characterized according to the literature.¹ Poly(methyl methacrylate) (PMMA, $M_n = 800,000$) was purchased from Nacalai Tesque and used without purification.

Synthetic procedures

1-(9-Anthracenyl)-2-phenyl-o-carborane (ANT-Ph). The of 9mixture (phenylethynyl)anthracene (0.278 g, 1.00 mmol), decaborane (0.257 g, 2.10 mmol), and AgNO₃ (6.8 mg, 0.04 mmol) was dissolved in dry toluene (5 mL) at room temperature under Ar atmosphere. MeCN (0.63 mL12.0 mmol) was added, and the mixture was refluxed for 3 d. After cooling to room temperature, the solvent was separated from the solid and evaporated. The residue was subjected to silica gel column chromatography with hexane as an eluent ($R_{\rm f} = 0.21$). Recrystallization from CHCl₃/MeOH to afford **ANT-Ph** as an orange crystal (0.11 mg, 0.28 mmol, 28%). ¹H NMR (400 MHz, CD₂Cl₂): δ (ppm) 9.02 (2H, d, J = 9.0 Hz, Ar-H), 8.09 (1H, s, Ar-H), 7.74 (2H, d, J = 8.3 Hz, Ar-H), 7.52-7.50 (2H, m, Ar-H), 7.41-7.32 (2H, m, Ar-H), 6.93-6.89 (2H, m, Ar-H), 6.58–6.56 (2H, m, Ar-H), 4.60–1.56 (10H, br, B-H). ¹³C NMR (100 MHz, CD₂Cl₂): δ (ppm) 134.0, 133.3, 131.8, 130.6, 130.2, 128.6, 127.6, 126.9, 126.1, 125.1, 119.0, 95.7, 91.8. ¹¹B NMR (128 MHz, CD₂Cl₂): δ (ppm) 0.5, -0.7, -2.2, -3.3, -8.5, -9.7, -10.8. HRMS (APCI): Calcd. for $C_{22}H_{24}B_{10}[M+H]^+ m/z$ 399.2881, found m/z 399.2879.

1-(9-Anthracenyl)-2-methyl-*o***-carborane (ANT-Me).** To a solution of **ANT-H** (64.1 mg, 200 µmol) in 1.60 mL of Et₂O was added dropwise a 1.60 M solution of *n*-BuLi in hexane (125 µL, 200 µmol) at 0 °C under Ar atmosphere. The mixture was stirred for 1 h, and then MeI (40 µL, 640 µmol) was added. The mixture was stirred at room temperature for 4 h in the dark. The reaction mixture was washed with water and brine, and the organic layer was dried over MgSO₄. After MgSO₄ was removed, the solvent was evaporated. The residue was purified by HPLC with CHCl₃ as an eluent and recrystallized from CHCl₃/hexane to afford **ANT-Me** as a yellow crystal (25.5 mg, 76.2 µmol, 38%). ¹H NMR (400 MHz, CD₂Cl₂): δ (ppm) 9.09 (2H, d, *J* = 9.3 Hz, Ar-*H*), 8.55 (1H, s, Ar-*H*), 8.00 (2H, t, *J* = 4.6 Hz, Ar-*H*), 7.56–7.46 (4H, m, Ar-*H*), 4.13–1.08 (10H, br, B-*H*), 0.68 (3H, s, CH₃). ¹³C NMR (100 MHz, CD₂Cl₂): δ (ppm) 134.1, 133.7, 132.3, 129.0, 127.5, 126.2, 125.4, 119.1, 87.5, 85.6, 22.9. ¹¹B NMR (128 MHz, CD₂Cl₂): δ (ppm) –0.3, –1.5, –4.5, –5.7, –6.6, –8.5, –9.7, –10.8. HRMS (APCI): Calcd. for C₁₇H₂₂B₁₀ [M+H]⁺ m/z 337.2725, found m/z 337.2718.

1-(9-Anthracenyl)-2-trimethylsilyl-*o***-carborane (ANT-TMS).** To a solution of **ANT-H** (56.1 mg, 175 μ mol) in 1.8 mL of Et₂O was added dropwise a 1.58 M solution of *n*-BuLi in hexane (111 μ L, 175 μ mol) at 0 °C under Ar atmosphere. The mixture was stirred for 1 h, and then TMSCl (55 μ L, 435 μ mol) was added, and the mixture was stirred at room temperature for 4 h. The reaction mixture was washed with water and brine, and the organic layer was dried over MgSO₄. After MgSO₄ was removed, the solvent was evaporated. The residue was purified by HPLC with CHCl₃ as an eluent to afford **ANT-TMS** as an orange solid (44.5 mg, 113 μ mol, 65%). Single crystals for crystallographic study were obtained by slow evaporation of CHCl₃/hexane solution. ¹H NMR (400 MHz, CD₂Cl₂): δ (ppm) 9.20 (2H, d, *J* = 9.3 Hz, Ar-*H*), 8.55 (1H, s, Ar-*H*), 7.96 (2H, dd, *J* = 8.3, 0.7 Hz, Ar-*H*), 7.58–7.53 (2H, m, Ar-*H*), 7.48 (2H, t, *J* = 7.4 Hz, Ar-*H*), 4.37–1.29

(10H, br, B-*H*), -0.87 (9H, s, Si-C*H*₃). ¹³C NMR (100 MHz, CD₂Cl₂): δ (ppm) 134.3, 133.8, 132.4, 129.0, 127.1, 126.4, 125.4, 120.6, 88.8, 88.5, -1.4. ¹¹B NMR (128 MHz, CD₂Cl₂): δ (ppm) 1.0, 0.5, -0.1, -6.9, -8.0, -9.1, -10.3. HRMS (APCI): Calcd. for C₁₉H₂₈B₁₀Si [M+H]⁺ m/z 395.2964, found m/z 395.2958.

Preparation of PMMA dispersion film

PMMA (M_n = 800,000, 30 mg) and the dyads (3 mg) were dissolved in CHCl₃ (1 mL), and dispersed film was fabricated via drop casting.

Computational methods

All computations were carried out with the Gaussian 09 suit program.² The molecular geometries were investigated by DFT and time-dependent DFT (TD-DFT) calculations with the B3LYP/6-31G(d) level of theory. Calculations on **ANT-H** with the CAM-B3LYP method (more appropriate for donor-acceptor system than the B3LYP method) or using 6-31+G(d) basis set gave similar results described here. The orbital contributions were generated by GaussSum package.³

Chart 1. ¹H NMR spectrum of ANT-Ph in CD₂Cl₂.

Chart 2. ¹³C NMR spectrum of ANT-Ph in CD₂Cl₂.

Chart 3. ¹¹B NMR spectrum of ANT-Ph in CD₂Cl₂.

Chart 4. ¹H NMR spectrum of ANT-Me in CD₂Cl₂.

Chart 5. 13 C NMR spectrum of ANT-Me in CD₂Cl₂.

Chart 6. ¹¹B NMR spectrum of ANT-Me in CD₂Cl₂.

Chart 7. ¹H NMR spectrum of ANT-TMS in CD₂Cl₂.

Chart 8. ¹³C NMR spectrum of ANT-TMS in CD₂Cl₂.

Chart 9. ¹¹B NMR spectrum of ANT-TMS in CD₂Cl₂.

·			
Empirical formula	$C_{22}H_{24}B_{10}$		
Formula weight	396.51		
Temperature (K)	93(2)		
Wavelength (Å)	0.71075		
Crystal system, space group	Monoclinic, $P 2_1/n$		
Unit cell dimensions	<i>a</i> = 11.9314(8)		
	<i>b</i> = 12.5281(8)		
	<i>c</i> = 14.8597(11)		
	$\alpha = 90$		
	$\beta = 99.122(7)$		
	$\gamma = 90$		
$V(\text{\AA}^3)$	2193.1(3)		
Z, calculated density (Mg m^{-3})	4, 1.201		
Absorption coefficient	0.061		
<i>F</i> (000)	824		
Crystal size (mm)	$0.80\times0.50\times0.40$		
θ range for data collection	3.22-27.48		
Limiting indices	-15≤h≤15, -14≤k≤16, -19≤l≤19		
Reflections collected (unique)	20669/5026 [<i>R</i> (int) = 0.0766]		
Completeness to theta $= 27.48$	0.999		
Max. and min. transmission	0.9760 and 0.9529		
Goodness-of-fit on F ²	1.055		
Final <i>R</i> indices $[I > 2\sigma(I)]^a$	$R_1 = 0.0563$, w $R_2 = 0.1412$		
R indices (all data)	$R_1 = 0.0790, wR_2 = 0.1552$		

Table S1. Crystallographic data of ANT-Ph.^a

^{*a*} The structures were solved by direct method (SIR97)⁴ and refined by full-matrix least-squares procedures based on F^2 (SHELX-97).^{5 b} $R_1 = \Sigma(|F_0| - |F_c|)/\Sigma|F_0|$. $wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^2)^2]^{1/2}$. $w = 1/[\sigma^2 (F_0^2) + [(ap)^2 + bp]]$, where $p = [\max(F_0^2, 0) + 2F_c^2]/3$.

5 6 1				
Empirical formula	$C_{17}H_{22}B_{10}$			
Formula weight	334.45			
Temperature (K)	93(2)			
Wavelength (Å)	0.71075			
Crystal system, space group	Orthorhombic, $P 2_1 2_1 2_1$			
Unit cell dimensions	<i>a</i> = 7.4049(3)			
	<i>b</i> = 10.2673(4)			
	<i>c</i> = 23.6399(11)			
	$\alpha = 90$			
	$\beta = 90$			
	$\gamma = 90$			
$V(Å^3)$	1797.30(13)			
Z, calculated density (Mg m^{-3})	4, 1.236			
Absorption coefficient	0.061			
<i>F</i> (000)	696			
Crystal size (mm)	0.60 imes 0.50 imes 0.50			
θ range for data collection	3.25-27.42			
Limiting indices	<i>−</i> 9≤ <i>h</i> ≤9, <i>−</i> 12≤ <i>k</i> ≤13, <i>−</i> 30≤ <i>l</i> ≤30			
Reflections collected (unique)	17403/4099 [R(int) = 0.0386]			
Completeness to theta $= 27.48$	0.997			
Max. and min. transmission	0.9700 and 0.9642			
Goodness-of-fit on F^2	1.036			
Final <i>R</i> indices $[I > 2\sigma(I)]^a$	$R_1 = 0.0376, wR_2 = 0.0956$			
<i>R</i> indices (all data)	$R_1 = 0.0399, wR_2 = 0.0970$			

 Table S2. Crystallographic data of ANT-Me.^a

^{*a*} The structures were solved by direct method (SIR97)⁴ and refined by full-matrix least-squares procedures based on F^2 (SHELX-97).^{5 b} $R_1 = \Sigma(|F_0| - |F_c|)/\Sigma|F_0|$. $wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^2)^2]^{1/2}$. $w = 1/[\sigma^2 (F_0^2) + [(ap)^2 + bp]]$, where $p = [\max(F_{0,0}^2) + 2F_c^2]/3$.

Empirical formula	$C_{19}H_{28}B_{10}Si$	
Formula weight	392.60	
Temperature (K)	93(2)	
Wavelength (Å)	0.71075	
Crystal system, space group	Monoclinic, $P 2_1/a$	
Unit cell dimensions	<i>a</i> = 10.1119(5)	
	<i>b</i> = 16.5353(8)	
	c = 12.9542(7)	
	$\alpha = 90$	
	$\beta = 90.332(6)$	
	$\gamma = 90$	
$V(\text{\AA}^3)$	2165.95(19)	
Z, calculated density (Mg m ⁻³)	4, 1.204	
Absorption coefficient	0.113	
<i>F</i> (000)	824	
Crystal size (mm)	0.90 imes 0.80 imes 0.50	
θ range for data collection	3.15-27.48	
Limiting indices	-13≤h≤13, -20≤k≤21, -16≤l≤16	
Reflections collected (unique)	18646/4926 [R(int) = 0.0592]	
Completeness to theta $= 27.47$	0.996	
Max. and min. transmission	0.9456 and 0.9051	
Goodness-of-fit on F^2	0.997	
Final <i>R</i> indices $[I > 2\sigma(I)]^a$	$R_1 = 0.0456, wR_2 = 0.1147$	
<i>R</i> indices (all data)	$R_1 = 0.0580, wR_2 = 0.1255$	

 Table S3. Crystallographic data of ANT-TMS.^a

^{*a*} The structures were solved by direct method (SIR97)⁴ and refined by full-matrix least-squares procedures based on F^2 (SHELX-97).^{5 b} $R_1 = \Sigma(|F_0| - |F_c|)/\Sigma|F_0|$. $wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^2)^2]^{1/2}$. $w = 1/[\sigma^2 (F_0^2) + [(ap)^2 + bp]]$, where $p = [\max(F_{0,0}^2) + 2F_c^2]/3$.

Compound	UV/vis ^a			CV^d		
	$λ_{abs}$ (nm) (ε, $_{x}10^{-4}$ M ⁻¹ cm ⁻¹) ^b z	λ _{abs,edge} (nm)	$E_{g}^{}(eV)^{c}$	E ^{red} onset (∇) ^e	HOMO (eV)∕	LUMO (eV) ^g
ANT-H	267(10.7), 395(0.86)	433	2.86	-1.21	-6.45	-3.59
ANT-Ph	271(6.8), 408(0.66)	463	2.68	-1.00	-6.48	-3.80
ANT-Me	268(12.5), 403(0.95)	448	2.77	-1.21	-6.36	-3.59
ANT-TMS	268(8.9), 404(0.73)	449	2.76	-1.10	-6.46	-3.70

Table S4. Optical and electrochemical properties of the dyads

^{*a*} Measured in THF solution (1.0×10^{-5} M) at room temperature. ^{*b*} Molar extinction coefficient. ^{*c*} Band gap energy: $E_g = 1240 / \lambda_{abs, edge}$. ^{*d*} CV was carried out in DMF with 0.1 M Bu₄NClO₄ as supporting electrolyte. ^{*e*} Onset potential of first reduction wave. ^{*f*} HOMO = LUMO – E_g (eV). ^{*g*} Calculated from the empirical formula, LUMO = – E^{red} – 4.80 (eV).⁶

Figure S1. Frontier orbitals and their energies (eV) of the dyads.

Figure S2. UV–vis absorption spectra of the dyads in THF (1.0×10^{-5} M).

Figure S3. PL spectra of the dyads in the crystalline state and PMMA (10 wt%).

Figure S4. Emission spectra of the powder samples of the *o*-carborane dyads during heating.

Figure S5. Changes in emission intensity of the dyads by heating at the peak top in the emission spectra.

dyads	T_{d5} (°C)
ANT-H	200
ANT-Me	201
ANT-TMS	223
ANT-Ph	268

Table S5. Thermal decomposition temperatures of the dyads^a

^{*a*}Determined from the decomposition temperature with 5 wt% weight losses with the thermogravimetric analyses under nitrogen flow (200 mL/min).

References

1. Finke, A. D.; Elleby, E. C.; Boyd, M. J.; Weissman, H.; Moore, J. S. J. Org. Chem. **2009**, *74*, 8897-8900.

 Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
 O'boyle, N. M.; Tenderholt, A. L.; Langner, K. M. *J. Comput. Chem.* 2008, *29*, 839-845.

- 4. A. Altomare, M. C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi,A. G. Moliteni, G. Polidori, R. Spagna, *J. Appl. Cryst.* 1999, *32*, 115-119.
- 5. Sheldrick, G. M. SHELX-97 Programs for Crystal Structure Analysis (University of Göttingen, Göttingen, Germany, 1997).

6. Chen, C.-P.; Chan, S.-H.; Chao, T.-C.; Ting, C.; Ko, B.-T. J. Am. Chem. Soc. 2008, 130, 12828-12833.