Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Supporting info

Probing the local structure of the near-infrared emitting persistent phosphor LiGa₅O₈:Cr³+

Olivier Q. De Clercq ^{a,b}, Lisa I.D.J. Martin ^{a,b}, Katleen Korthout ^{a,b}, Henk Vrielinck^c, Jevgenij Kusakovskij ^c, Dirk Poelman ^{a,b,*}

^a LumiLab, Department of Solid State Sciences, Ghent University, Ghent, Belgium

^b Center for Nano- and Biophotonics (NB-Photonics), Ghent University, Ghent, Belgium

^c EMR group, Department of Solid State Sciences, Ghent University, Ghent, Belgium

^{*} Corresponding author - dirk.poelman@ugent.be

Results: XRD reference patterns

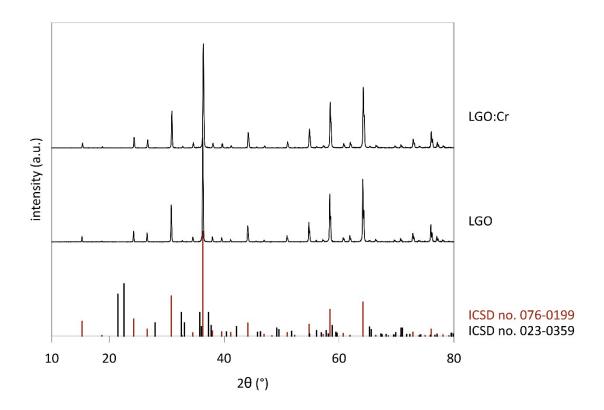


Figure S1: XRD patterns of LGO and LGO:Cr, compared with reference patterns for the $P4_332$ space group of LiGa $_5O_8$ (ICSD no. 076-0199, red) and the $Pna2_1$ space group of LiGa O_2 (ICSD no. 023-0359, black). No LiGa O_2 phase can be detected in the samples.

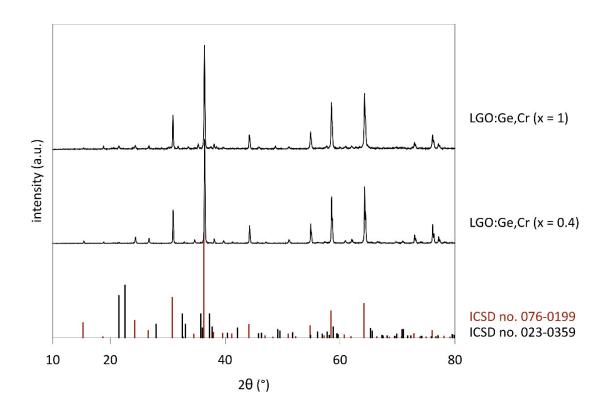


Figure S2: XRD patterns of LGO:Ge,Cr (x=0.4 , x = 1), compared with reference patterns for the P4₃32 space group of LiGa₅O₈ (ICSD no. 076-0199, red) and the Pna2₁ space group of LiGaO₂ (ICSD no. 023-0359, black). No LiGaO₂ phase can be detected. Small amounts of Ge-containing side phase are present in the x = 1 sample only.

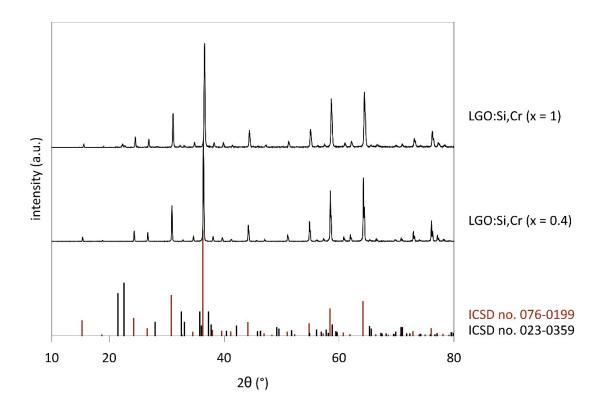


Figure S3: XRD patterns of LGO:Si,Cr (x=0.4 , x = 1), compared with reference patterns for the P4 $_3$ 32 space group of LiGa $_5$ 0 $_8$ (ICSD no. 076-0199, red) and the Pna2 $_1$ space group of LiGaO $_2$ (ICSD no. 023-0359, black). No LiGaO $_2$ phase can be detected. Small amounts of Si-containing side phase are present in the x = 1 sample only.

Results: SEM-EDX mappings

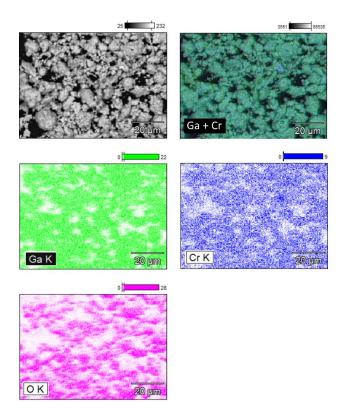


Figure S4: SEM image of LGO:Cr powder and EDX mappings of Ga (green), Cr (blue) and O (pink) signals and composite map of Ga and Cr.

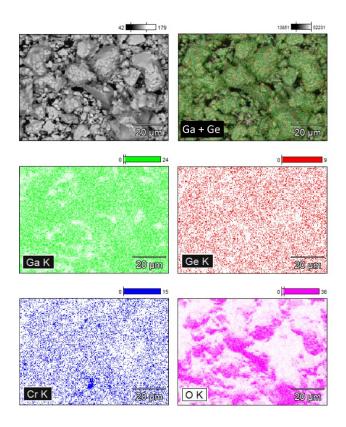


Figure S5: SEM image of LGO:Ge,Cr (x = 0.4) powder and EDX mappings of Ga (green), Ge (red), Cr (blue) and O (pink) signals and composite map of Ga and Ge.

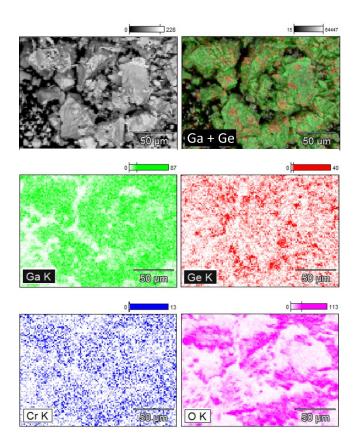


Figure S6: SEM image of LGO:Ge,Cr (x = 1) powder and EDX mappings of Ga (green), Ge (red), Cr (blue) and O (pink) signals and composite map of Ga and Ge. Clustering of Ge is evident from this composite map.

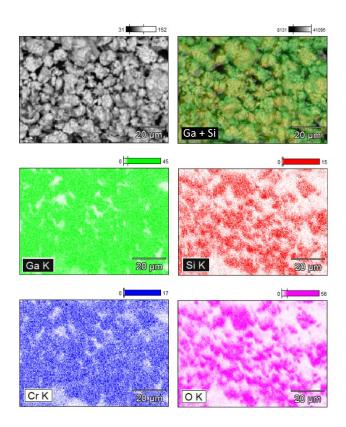


Figure S7: SEM image of LGO:Si,Cr (x = 0.4) powder and EDX mappings of Ga (green), Si (red), Cr (blue) and O (pink) signals and composite map of Ga and Ge.

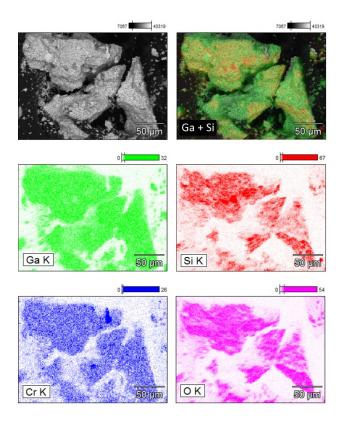


Figure S8: SEM image of LGO:Si,Cr (x = 1) powder and EDX mappings of Ga (green), Si (red), Cr (blue) and O (pink) signals and composite map of Ga and Ge. Clustering of Si is evident from this composite map.

NOTE

All SEM images and EDX mappings were taken at a low oxygen pressure of 20 Pa. This results in larger oxygen signals than expected from stoichiometry.

Results: Diffuse reflectance measurements

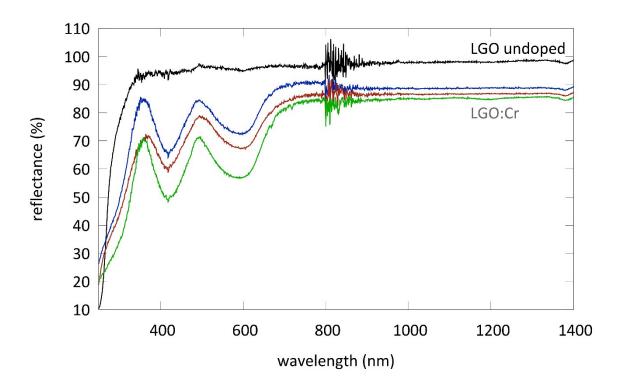


Figure S9: Diffuse reflectance spectra of undoped LGO and selected LGO:Cr samples. The optical transitions of Cr^{3+} are visible below 300 nm, and at 410 and 600 nm. The noise between 800 and 900 nm is due to the changing of detectors in the spectrometer.

Results: Radioluminescence

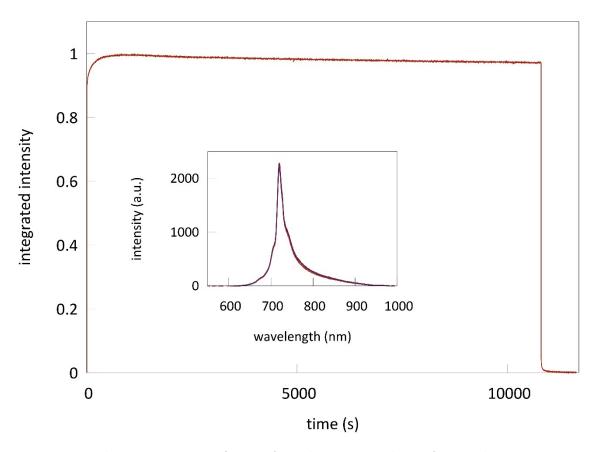


Figure S10: Integrated emission intensity as a function of time, during X-Ray irradiation of LGO:Cr. The emission intensity does only decrease 2 % over the course of 3 h. Inset: emission spectrum of LGO:Cr, when excited via full spectrum Cu-anode X-rays.