Isomeric ligand enhancing the anisotropy barrier within ninecoordinated $\{\mathrm{Dy} 2 \boldsymbol{\}}$ Compounds

Lin Sun ${ }^{\ddagger a}$, Shilong Wei ${ }^{\ddagger a}$, Jun Zhang ${ }^{\text {c }}$, Wenyuan Wang ${ }^{\text {a }}$, Sanping Chen*a, Yiquan Zhang*b, Qing Wei ${ }^{\text {a }}$, Gang Xie ${ }^{\text {a }}$, Shengli Gao ${ }^{\text {a }}$

[^0]
*Corresponding authors

Dr. Sanping Chen, Dr. Yi-Quan Zhang
E-mail address: sanpingchen@126.com; zhangyiquan@njnu.edu.cn

Contents

Page S3 Quantum chemical calculation for 2,3'-Hpcad and 2,4'-Hpcad
Page S6 Single Crystal X-Ray Diffraction
Page S7 Thermogravimetric analysis
Page S8 X-Ray Powder Diffraction

Page S9 Crystal Structure
Page S12 Magnetic Measurements
Page S13 Results of ab initio investigation
Page S16 References

Quantum chemical calculation for 2,3'-Hpcad and 2,4'-Hpcad

Theoretical research on the electronic configuration for $2,3^{\prime}-\mathrm{Hpcad}$ and $2,4^{\prime}$-Hpcad was carried out using Gaussian09 program ${ }^{\mathrm{S} 1}$, at the B3LYP ${ }^{\mathrm{S} 2, S 3}$ level of theory with $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set.

Density function theory (DFT) method was performed to get an insight of the electronic structures and bonding properties of $2,3^{\prime}-\mathrm{Hpcad}$ and $2,4^{\prime}-\mathrm{Hpcad}$. The following calculation and discussion are resulted from the optimized structure. The full geometry optimization is performed without constraints on symmetry. The optimized geometries of different conformations have been obtained at the B3LYP/6-31G(d, p$)$ level and shown in Figure S1.

The molecular total energies, zero-point energies and frontier orbital energies and the energy gaps of different conformations had been calculated and listed in Table S1. For 2,3'-Hpcad, the total energies of four different conformations are calculated to be $-812.6270,-812.6436,-812.6455$, 812.6441 a.u., respectively. Obviously, the trans-I conformation provides relatively lower energy, representing more stable geometry. Compared with the trans-I conformation, the cis-I conformation (-812.6270 a.u.) of 2,4'-Hpcad shows more stable geometry.

The surfaces of HOMO-1, HOMO, LUMO and LUMO+1 for four conformations are shown in Figure S2. The frontier molecular orbitals of six conformations are mainly composed of p atomic orbitals, and the electronic transitions are mainly assigned to $n \rightarrow \pi^{*}$ and $\pi \rightarrow \pi^{*}$ electronic transitions. The same electron distribution of the frontier orbitals indicates similar electronic transition model. For $2,3^{\prime}-$ Hpcad and $2,4^{\prime}-\mathrm{Hpcad}$, the energy gaps of trans-I conformation ($\Delta E_{\text {(Lumo- }}$ номо) $=4.24 \mathrm{eV}$) and cis-I conformation are lower than that of other conformations, respectively, suggesting the greater ability of electron transition under external stimuli. To estimate the possible coordinated condition of the trans-I conformation (2,3'-Hpcad) and cis-I conformation ($2,4^{\prime}$-Hpcad), the natural charges and electron configurations of the atoms have been calculated by using natural bond orbital (NBO) analysis. As shown in Table S2, mulliken charges and natural charges of N1, $\mathrm{N} 2, \mathrm{~N} 3, \mathrm{~N} 4, \mathrm{~N} 5$ and O 1 atoms are calculated as negative values. However, N1, N2, N5 and O1 atoms of $2,3^{\prime}-\mathrm{Hpcad}$ with d Orbital contribution are prone to coordinate with metal ions. In particular, $\mathrm{N} 1, \mathrm{~N} 2$ and O 1 atoms of $2,3^{\prime}-\mathrm{Hpcad}\left(\mathrm{N} 3, \mathrm{~N} 5\right.$ and O1 atoms of $\left.2,4^{\prime}-\mathrm{Hpcad}\right)$ are more likely to coordinate to the metallic ions in tridentate-fashion. The position of N atoms in the pyridine ring is different (N5 of 2,3'-Hpcad; N1 of 2, 4^{\prime}-Hpcad), such subtle changes likely to fine-tine coordination geometry.

cis-I

trans-I

cis-II

Figure S1. Optimized structures of four conformations for 2, $\mathbf{3}^{\prime}$-Hpcad.

Figure S2. Optimized structures of four conformations for 2, ${ }^{\prime}$ - Hpcad.

Figure S3. Isodensity surfaces of HOMO-1, HOMO, LUMO and LUMO+1 for 2,3'-Hpcad.

Figure S4. Isodensity surfaces of HOMO-1, HOMO, LUMO and LUMO+1 for 2, $\mathbf{4}^{\prime}$ - Hpcad.

Table S1. Calculated total energies, zero-point energies and frontier orbit energies of 2,3'-Hpcad and 2,4'-Hpcad.

		$2,3^{\prime}$-Hpcad		$2,4^{\prime}$-Hpcad		
	Cis-I	Cis-II	Trans-I	Trans-II	Cis-I	Cis-II
E / a.u.	-812.6270	-812.6436	$\mathbf{- 8 1 2 . 6 4 5 5}$	-812.6441	$\mathbf{- 8 1 2 . 6 4 4 5}$	-812.6275
$(E+Z P E) /$ a.u.	-812.6422	-812.6285	$\mathbf{- 8 1 2 . 6 6 0 4}$	-812.6590	$\mathbf{- 8 1 2 . 6 5 9 4}$	-812.6426
$E_{(\text {(HOMO-1) }} /$ a.u.	-0.24423	-0.24562	$\mathbf{- 0 . 2 4 8 2 4}$	-0.24691	$\mathbf{- 0 . 2 5 2 7 8}$	-0.25006
$E_{\text {HOMO }} /$ a.u.	-0.21631	-0.21536	$\mathbf{- 0 . 2 1 4 7 7}$	-0.21580	$\mathbf{- 0 . 2 1 7 9 4}$	-0.21852
$E_{\text {LUMO }} /$ a.u.	-0.05579	-0.05535	$\mathbf{- 0 . 0 5 8 9 4}$	-0.05959	$\mathbf{- 0 . 0 6 3 5 4}$	-0.05959
$E_{(\text {LUMO+1) }} /$ a.u.	-0.03760	-0.03638	$\mathbf{- 0 . 0 3 7 3 3}$	-0.03882	$\mathbf{- 0 . 0 4 2 3 3}$	-0.04113
$\Delta E_{(\text {LUMO-HOMO) }} /$ eV	4.37	4.34	$\mathbf{4 . 2 4}$	4.25	$\mathbf{4 . 2 0}$	4.31

Table S2. Natural configurations and natural charges for the selected atoms of tran-I (2, 3^{\prime} - Hpcad$)$ and cis-I (2,4'Hpcad).

Atom	Configuration	Natural charge	Mulliken charge
Trans-I (2,3'-Hpcad)			
N1	$[$ core $] 2 s(1.39) 2 p(3.84) 3 p(0.01) 3 d(0.01)$	-0.25511	-0.267946
N2	$[$ core $] 2 s(1.37) 2 p(4.03) 3 p(0.01) 3 d(0.01)$	-0.41442	-0.443858
N3	[core] $2 s(1.26) 2 p(4.21) 3 p(0.01)$	-0.48192	-0.438926
N4	[core] $2 s(1.37) 2 p(4.52) 3 p(0.01)$	-0.90090	-0.655380
N5	[core] $2 s(1.38) 2 p(4.05) 3 p(0.01) 3 d(0.01)$	-0.44875	-0.439267

01	[core] $2 s(1.70) 2 p(4.87) 3 d(0.01)$	-0.58076	-0.484648
Cis-I (2,4'-Hpcad)			
N1	[core] $2 s(1.38) 2 p(4.04) 3 p(0.01) 3 d(0.01)$	-0.44190	-0.424591
N2	[core] $2 s(1.25) 2 p(4.21) 3 p(0.01)$	-0.48111	-0.434042
N3	[core] $2 s(1.39) 2 p(3.84) 3 p(0.01) 3 d(0.01)$	-0.25553	-0.267533
N4	[core] $2 s(1.37) 2 p(4.52) 3 p(0.01)$	-0.90095	-0.655540
N5	[core] $2 s(1.37) 2 p(4.03) 3 p(0.01) 3 d(0.01)$	-0.41440	-0.443883
01	[core] $2 s(1.70) 2 p(4.86) 3 d(0.01)$	-0.57414	-0.477773

Single Crystal X-Ray Diffraction

Table S3. Crystallographic Data for compounds 1 and 2.

Compound	1	2
Empirical formula	$\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{Dy}_{2} \mathrm{~N}_{10} \mathrm{O}_{16}$	$\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{Dy}_{2} \mathrm{~N}_{10} \mathrm{O}_{12}$
Formula weight	1149.77	1077.71
Temperature	296 K	296 K
Crystal system	Monoclinic	Monoclinic
space group	C2/c	$P 2_{1} / n$
$a(\AA)$	17.6569(7)	11.392(2)
$b(\AA)$	$13.0716(5)$	14.396(2)
$c(\AA)$	18.0859(7)	11.488(2)
$\alpha\left({ }^{\circ}\right)$	90	90
$\beta\left({ }^{\circ}\right)$	97.960(4)	102.493(3)
$\gamma\left(^{\circ}\right)$	90	90
$V\left(\AA^{3}\right)$	4134.1(3)	1839.4(5)
Z	4	2
$F(000)$	2264.0	1052.0
Goodness-of-fit on $F^{\wedge} 2$	0.946	1.158
Final R indices $[1>2 \operatorname{sigma}(I)]$	$\begin{gathered} R 1=0.0418 \\ w R 2=0.1129 \end{gathered}$	$\begin{gathered} R 1=0.0740 \\ w R 2=0.1724 \end{gathered}$
R indices (all data)	$\begin{gathered} R 1=0.0634 \\ w R 2=0.1290 \end{gathered}$	$\begin{gathered} R 1=0.0902 \\ w R 2=0.1806 \end{gathered}$
CCDC	1523394	1469449

Table S4. Selected bond lengths (\AA) and angles $\left(^{\circ}\right)$ for 1 and 2.

	$\mathbf{1}$		$\mathbf{2}$	
Dy1-O1	$2.350(4)$	Dy1-O4	$2.610(9)$	
Dy1-O5		$2.352(4)$	Dy1-O1	$2.306(9)$

Dy1-O6	$2.363(4)$	Dy1-O4	$2.346(8)$
Dy1-O3	$2.452(5)$	Dy1-O5	$2.382(8)$
Dy1-O2	$2.434(5)$	Dy1-N1	$2.425(1)$
Dy1-N3	$2.430(5)$	Dy1-O7	$2.433(1)$
Dy1-O17	$2.450(5)$	Dy1-O2	$2.454(9)$
Dy1-N5	$2.575(3)$	Dy1-O6	$2.473(1)$
Dy1-O6	$2.617(4)$	Dy1-N2	$2.503(1)$
O2-Dy1-O17	$75.61(2)$	O5-Dy1-O2	$77.0(3)$
N3-Dy1-O17	$137.9(2)$	N1-Dy1-O2	$75.8(4)$
O1-Dy1-N5	$127.68(1)$	O7-Dy1-O2	$150.5(3)$
O5-Dy1-N5	$77.30(1)$	O1-Dy1-O6	$125.2(4)$
O6-Dy1-N5	$88.70(4)$	O4i-Dy1-O6	$80.4(4)$
O3-Dy1-N5	$72.14(2)$	O5-Dy1-O6	$71.5(3)$
O2-Dy1-N5	$85.66(2)$	N1-Dy1-O6	$115.7(4)$
N3-Dy1-N5	$62.66(1)$	O7-Dy1-O6	$51.4(3)$
O17i-Dy1-N5	$145.61(2)$	O6-Dy1-O4	$134.7(3)$
O1-Dy1-O6	$74.11(1)$	N2-Dy1-O4	$123.3(3)$
O6-Dy1-O6	O1-Dy1-O4	$75.3(3)$	
O3-Dy1-O6	O1-Dy1-O4	$145.0(3)$	
O2-Dy1-O6	O1-Dy1-O5	$78.4(3)$	
O1-Dy1-O5	$113.48(2)$	O4)	O1-Dy1-O5

Thermogravimetric analysis

As shown in Figure S5a, the TGA curve of compound 1 suggests the first weight loss of 6.2% in range of $30^{\circ} \mathrm{C}-140^{\circ} \mathrm{C}$, corresponding to loss of two lattice water molecules and two coordinated water molecules (Calcd. 6.4%). It is highly possible that 1 would firstly lose two lattice water molecules due to the grinding before measurement when compared to the result of crystal
measurement. The framework decomposes gradually as the temperature increasing. For compound 2, the decomposition begins at $184^{\circ} \mathrm{C}$, then weight loss (4.6\%) in the range of 184 to $195^{\circ} \mathrm{C}$, which larger than the content of coordinated water molecules (Calcd. 3.2%), likely due to partial decomposition of coordinated groups in compound 2, after which the framework decomposes gradually.

Figure S5. TGA of 1(a) and 2(b) under dry N_{2} atmosphere.

X-Ray Powder Diffraction

The simulated PXRD pattern was calculated using single-crystal X-ray diffraction data and processed by Mercury $2.4^{\mathrm{S} 4}$ program provided by the Cambridge Crystallographic Data Center.

Figure S6. Experimental PXRD and calculated PXRD of 1(a) and 2(b).

Crystal Structure

Figure S7. (a) Connection mode of 2,4'-Hpcad ligand; (b) Connection mode of 2,3'-Hpcad ligand; Three coordinate modes of acetate groups: (c) $\eta^{1}: \eta^{2}: \mu_{2}$

Figure S8. Local coordination geometry of the Dy ${ }^{\text {III }}$ ion in $\mathbf{1}(\mathrm{a})$) and 2(b).

Table S5. The calculated results for Dy ${ }^{\text {III }}$ ions configuration of $\mathbf{1}$ and $\mathbf{2}$ by SHAPE 2.1 software.

Configuration	ABOXIY, 1	ABOXIY, 2
Octagonal pyramid $\left(C_{8 \mathrm{v}}\right)$	22.964	22.322
Heptagonal bipyramid $\left(D_{7 \mathrm{~h}}\right)$	17.399	17.698
Johnson Triangular cupola $\mathrm{J} 3\left(C_{3 \mathrm{v}}\right)$	13.355	14.214
Capped Cube J8 $\left(C_{4 \mathrm{v}}\right)$	9.623	9.942
Spherical-relaxed capped Cube $\left(C_{4 \mathrm{v}}\right)$	8.152	8.328
Capped square antiprism J10 $\left(C_{4 \mathrm{v}}\right)$	3.357	3.171
Spherical capped square antiprism $\left(\boldsymbol{C}_{4 \mathrm{v}}\right)$	$\mathbf{2 . 3 3 6}$	$\mathbf{2 . 1 6 7}$
Tricapped trigonal prism J51 $\left(D_{3 \mathrm{~h}}\right)$	3.230	3.542
Spherical tricapped trigonal prism $\left(D_{3 \mathrm{~h}}\right)$	$\mathbf{2 . 5 6 3}$	$\mathbf{2 . 9 6 5}$
Tridiminished icosahedron $\mathrm{J} 63\left(C_{3 \mathrm{v}}\right)$	10.847	$\mathbf{1 1 . 1 7 8}$

Figure S9. Packing diagram for compound 1. The black dotted lines represent the $\pi \cdots \pi$ interactions, and the purple dotted lines represent the hydrogen bonding interactions.

Table S6. Hydrogen bond geometry in compound $\mathbf{1 .}$

D-H $\cdots \mathrm{A}$	$d_{\mathrm{D}-\mathrm{H}} / \AA$	$\boldsymbol{d}_{\mathbf{H} \cdots \mathrm{A}} / \AA$	$d_{\mathrm{D} \cdots \mathrm{A}} / \AA$	$<\mathrm{DHA}^{\circ}$
O5-H5A $\cdots \mathrm{Ol}^{\mathrm{i}}$	0.89	$\mathbf{1 . 9 3}$	$2.807(5)$	167.5
O5-H5B $\cdots \mathrm{N} 1^{\mathrm{vi}}$	0.89	$\mathbf{1 . 8 9}$	$2.696(6)$	149.3
O9-H9A $\cdots \mathrm{Ol}^{\mathrm{ii}}$	0.85	$\mathbf{2 . 4 2}$	$3.159(1)$	146.6

(i) $-x+1 / 2,-y+3 / 2,-z+1$; (ii) $x+1 / 2, y-1 / 2, z$; (iii) $-x,-y+2,-z+1$; (iv) $x+1 / 2,-y+3 / 2, z+1 / 2$

Figure S10. Packing diagram for compound 2. The black dotted lines represent the $\pi \cdots \pi$ interactions, and the purple dotted lines represent the hydrogen bonding interactions.

Table S7. Hydrogen bond geometry in compound 2.

D-H $\cdots \mathrm{A}$	$d_{\mathrm{D}-\mathrm{H}} / \AA$	$\boldsymbol{d}_{\mathbf{H} \cdots \mathrm{A}} / \AA$	$d_{\mathrm{D} \cdots \mathrm{A}} / \AA$	$<\mathrm{DHA}^{\circ}$
$\mathrm{O}^{\circ}-\mathrm{H} 5 \mathrm{~A} \cdots \mathrm{O}^{\mathrm{i}}$	0.96	$\mathbf{1 . 7 7}$	$2.721(1)$	169.1
${\text { O5-H5B } \cdots \mathrm{N}^{\mathrm{v}}}^{\mathrm{V}}$	0.96	$\mathbf{1 . 8 6}$	$2.757(1)$	155.3
$\mathrm{~N} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{O}^{\mathrm{iii}}$	0.89	$\mathbf{2 . 1 6}$	$3.014(1)$	161.2

(i) $\quad 1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}$; (ii) $-1+\mathrm{x}, \mathrm{y}, \mathrm{z}$; (iii) $1-\mathrm{x}, 1-\mathrm{y}, 2-\mathrm{z}$; (iv) $-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}$; (v) $1+\mathrm{x}, \mathrm{y}, \mathrm{z}$.

Figure S11. The distances of dinuclear Dy units in compound 1. (a) along the a axis; (b) along the b axis; (c) along the c axis.

Figure S12. The distances of dinuclear Dy units in compound 2. (a) along the a axis; (b) along the b axis; (c) along the c axis.

Magnetic Measurements

Figure S13. Frequency dependence of the in-phase (a) and out-of phase (b) ac susceptibility signals under 0 Oe for
1.

Figure S14. Temperature dependence of the in-phase (a) and out-of phase (b) ac susceptibility signals under 0 Oe dc field for 2.

Figure S15. Plot of the relaxation time $\tau(\mathrm{T})$ (logarithmic scale) versus T^{-1} for $\mathbf{1}(\mathrm{a})$ and $\mathbf{2}(\mathrm{b})$; the solid blue line corresponds represents fitting to the Orbach relaxation process $\left(U_{\text {eff }}=48.9 \mathrm{~K}\right.$ and a pre-exponential factor $\left(\tau_{\mathrm{o}}\right)=7.4$ $\times 10^{-6} \mathrm{~s}$ for $\mathbf{1} ; U_{\text {eff }}=100.7 \mathrm{~K}$ and a pre-exponential factor $\left(\tau_{\mathrm{o}}\right)=3.9 \times 10^{-7} \mathrm{~s}$ for $\left.\mathbf{2}\right)$.

Table S8. Relaxation fitting parameters from Least-Squares Fitting of $\chi(\omega)$ data of $\mathbf{1}$.

$T(\mathrm{~K})$	$\Delta \chi_{1}\left(\mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right)$	$\Delta \chi_{2}\left(\mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right)$	α	R^{2}
5.0	4.87371	0.08822	0.23995	0.9999
6.0	4.06221	0.07437	0.22797	0.9989
7.0	3.49498	0.05875	0.22613	0.9944
8.0	3.06729	0.04944	0.22371	0.9880
8.5	2.89126	0.04873	0.22191	0.9830
9.0	2.73321	0.05304	0.21901	0.9814
9.5	2.59261	0.06379	0.21550	0.9801
10.0	2.46561	0.08472	0.20998	0.9851
10.5	2.35046	0.12035	0.20209	0.9867
11.0	2.05977	0.34295	0.15427	0.9872
12.0	1.90299	0.53988	0.10944	0.9845

Table S9. Relaxation fitting parameters from Least-Squares Fitting of $\chi(\omega)$ data of $\mathbf{2}$.

$T(\mathrm{~K})$	$\Delta \chi_{1}\left(\mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right)$	$\Delta \chi_{2}\left(\mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right)$	α	R^{2}
7.0	3.47096	0.5908	0.21977	0.9908
8.0	2.96569	0.5240	0.16732	0.9856
9.0	2.62051	0.47874	0.13184	0.9850
10.0	2.68744	0.47427	0.11644	0.9842
11.0	2.44955	0.44061	0.10419	0.9852
12.0	2.25152	0.43836	0.08439	0.9898
13.0	2.08543	0.44576	0.07113	0.9929
13.5	1.77088	0.40845	0.06684	0.9931
14.0	1.94297	0.46796	0.06186	0.9951
14.5	1.65563	0.43595	0.05900	0.9958
15.0	1.82026	0.50771	0.05576	0.9962
16.0	1.71243	0.59232	0.03399	0.9960
17.0	1.61776	0.65061	0.03050	0.9880
18.0	1.53207	0.71282	0.02188	0.9888

Results of ab initio investigation

The dinuclear compounds $\mathbf{1}$ and $\mathbf{2}$ have an inversion center, thus only one magnetic center is calculated. Complete-active-space self-consistent field (CASSCF) calculations on individual lanthanide Dy ${ }^{\text {III }}$ fragment of the complete structure (see Figure S26 for the complete structures of compounds $\mathbf{1}$ and $\mathbf{2}$) extracted from each compound on the basis of single-crystal X-ray determined geometry have been carried out with MOLCAS 8.0 program package. ${ }^{\text {S5 }}$ Each dysprosium center was calculated keeping the experimentally determined structure of the corresponding compound while replacing the neighboring Dy ${ }^{\text {III }}$ ion by diamagnetic Lu .

The basis sets for all atoms are atomic natural orbitals from the MOLCAS ANO-RCC library: ANO-RCC-VTZP for Dy ${ }^{\text {III }}$ ions; VTZ for close O and N ; VDZ for distant atoms. The calculations employed the second order Douglas-Kroll-Hess Hamiltonian, where scalar relativistic contractions were taken into account in the basis set and the spin-orbit couplings were handled separately in the restricted active space state interaction (RASSI-SO) procedure. For the fragment of individual Dy ${ }^{\text {III }}$ ions, active electrons in 7 active spaces include all f electrons ($\operatorname{CAS}(9$ in 7$)$) in the CASSCF calculation. To exclude all the doubts, we calculated all the roots in the active space. We have mixed the maximum number of spin-free state which was possible with our hardware (all from 21 sextets, 128 from 224 quadruplets, 130 from 490 doublets for the Dy ${ }^{\text {III }}$ fragment).

To fit the exchange interactions in these complexes, we took two steps to obtain them. Firstly, we calculated one Dy ${ }^{\text {III }}$ fragment using CASSCF to obtain the corresponding magnetic properties. Then, the exchange interaction between the magnetic centers is considered within the Lines model, ${ }^{\mathrm{S} 6}$ while the account of the dipole-dipole magnetic coupling is treated exactly. The Lines model is effective and has been successfully used widely in the research field of f-element single-molecule magnets. ${ }^{\text {S7 }}$

For each of compounds $\mathbf{1}$ and $\mathbf{2}$, there is only one type of J.
The exchange Hamiltonian is:

$$
\begin{equation*}
H_{\text {exch }}=-J_{\text {total }} \hat{\xi} /_{y y 1} \hat{\xi} /_{g_{y 1}} \tag{S1}
\end{equation*}
$$

The $J_{\text {total }}$ is the parameter of the total magnetic interaction $\left(J_{\text {total }}=J_{\text {diploar }}+J_{\text {exchange }}\right)$ between magnetic center ions. The $\hat{\$} / 8_{y}= \pm 1 / 2$ are the ground pseudospin on the Dy ${ }^{\text {III }}$ sites. The dipolar magnetic coupling can be calculated exactly, while the exchange coupling constants were fitted through comparison of the computed and measured magnetic susceptibility and molar magnetization using the POLY_ANISO program. ${ }^{\text {S8 }}$

Figure S16. Calculated complete structures for compounds 1(a) and 2(b); H atoms are omitted.

Table S10. Calculated energy levels $\left(\mathrm{cm}^{-1}\right), \boldsymbol{g}\left(g_{\mathrm{x}}, g_{\mathrm{y}}, g_{\mathrm{z}}\right)$ tensors and m_{J} values of the lowest Kramers doublets (KDs)
of one Dy ${ }^{\text {III }}$ center for compounds 1 and 2.

KD	1			2		
	E / cm^{-1}	g	\boldsymbol{m}_{J}	E / cm^{-1}	g	\boldsymbol{m}_{J}
1	0.0	$\begin{gathered} 0.004 \\ 0.028 \\ 19.617 \end{gathered}$	$\pm 15 / 2$	0.0	$\begin{gathered} 0.022 \\ 0.032 \\ 19.581 \end{gathered}$	$\pm 15 / 2$
2	104.4	$\begin{gathered} 0.026 \\ 0.114 \\ 19.331 \end{gathered}$	$\pm 11 / 2$	121.9	$\begin{gathered} 0.864 \\ 1.681 \\ 16.071 \end{gathered}$	$\pm 13 / 2$
3	149.9	$\begin{gathered} 0.099 \\ 0.530 \\ 15.476 \end{gathered}$	$\pm 13 / 2$	158.1	$\begin{gathered} 0.823 \\ 2.360 \\ 11.755 \end{gathered}$	$\pm 1 / 2$
4	187.3	$\begin{gathered} 3.568 \\ 5.058 \\ 12.760 \end{gathered}$	$\pm 9 / 2$	178.8	$\begin{aligned} & 1.960 \\ & 4.030 \\ & 11.429 \end{aligned}$	$\pm 7 / 2$
5	236.8	$\begin{gathered} 1.243 \\ 2.497 \\ 11.104 \end{gathered}$	$\pm 3 / 2$	212.7	$\begin{aligned} & 0.065 \\ & 4.930 \\ & 11.190 \end{aligned}$	$\pm 9 / 2$
6	326.7	$\begin{gathered} 0.498 \\ 0.655 \\ 17.400 \end{gathered}$	$\pm 7 / 2$	266.0	$\begin{aligned} & 2.639 \\ & 4.442 \\ & 9.446 \end{aligned}$	$\pm 5 / 2$
7	349.1	$\begin{gathered} 0.429 \\ 0.778 \\ 16.295 \end{gathered}$	$\pm 5 / 2$	315.8	$\begin{gathered} 1.256 \\ 2.753 \\ 14.582 \end{gathered}$	$\pm 11 / 2$
8	488.6	$\begin{gathered} 0.064 \\ 0.095 \\ 19.025 \end{gathered}$	$\pm 1 / 2$	422.4	$\begin{gathered} 0.175 \\ 0.191 \\ 19.101 \end{gathered}$	$\pm 3 / 2$

Table S11. Exchange energies $\left(\mathrm{cm}^{-1}\right)$ and main values of the g_{z} for the lowest two exchange doublets of compounds
1 and 2.

		$\mathbf{1}$		
	E	g_{z}	E	g_{z}
1	0.0	0.000	0.0	0.000
2	0.6	39.229	1.6	39.158

Table S12. Natural Bond Order (NBO) charges per atoms in the ground state of compounds $\mathbf{1}$ and $\mathbf{2}$ calculated within CASSCF.

1		2	
Dy1	2.514	Dy1	2.514
O6	-0.748	$\mathrm{O} 4^{\mathrm{i}}$	-0.753
$\text { O6 }{ }^{\text {i }}$	-0.683	O4	-0.690
O17 ${ }^{\text {i }}$	-0.681	O2	-0.740
01	-0.839	01	$-\mathbf{0 . 8 4 0}$
O2	-0.799	O7	-0.757
03	-0.805	O6	-0.755
05	-0.744	05	-0.766
N3	-0.314	N1	-0.350
N5	-0.371	N2	-0.341
(i) $-x+1 / 2,-y+3 / 2,-z+1$.		(i) $1-x, 1-y, 1-z$.	

References

[S1] Frisch, M. J. et al. Gaussian 09, Revision E.01; Gaussian Inc: Wallingford, CT, 2009.
[S2] Becke A D. J. Chem. Phys., 1993, 98:5648-5652
[S3] Lee C, Yang W, Parr R G, et al. Phys. Rev. B., 1988, 37:785-789
[S4] C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, J. Appl. Crystallogr., 2008, 41, 466.
[S5] Karlström, G.; Lindh, R.; Malmqvist, P.-Å.; Roos, B. O.; Ryde, U.; Veryazov, V.; Widmark, P.-O.; Cossi, M.; Schimmelpfennig, B.; Neogrady, P.; Seijo, L. MOLCAS: a Program Package for Computational Chemistry. Comput. Mater. Sci. 2003, 28, 222.
[S6] Lines, M. E. J. Chem. Phys. 1971, 55, 2977.
[S7] (a) Mondal, K. C.; Sundt, A.; Lan, Y. H.; Kostakis, G. E.; Waldmann, O.; Ungur, L.; Chibotaru, L. F.; Anson, C. E.; Powell, A. K. Angew. Chem. Int. Ed. 2012, 51, 7550. (b) Langley, S. K.; Wielechowski, D. P.; Vieru, V.; Chilton, N. F.; Moubaraki, B.; Abrahams, B. F.; Chibotaru, L. F.; Murray, K. S. Angew. Chem. Int. Ed. 2013, 52, 12014.
[S8] (a) Chibotaru, L. F.; Ungur, L.; Soncini, A. Angew. Chem. Int. Ed., 2008, 47, 4126. (b) Ungur, L.; Van denHeuvel, W.; Chibotaru, L.F. New J. Chem., 2009, 33, 1224. (c) Chibotaru, L. F.; Ungur, L.; Aronica,C.; Elmoll, H.; Pilet, G.; Luneau, D. J. Am. Chem. Soc., 2008, 130, 12445.

[^0]: a. Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China.
 b. Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
 c. School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, China
 \ddagger These authors contributed equally to this work.

