Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

## **Electronic Supplementary Information**

Yunxia Song,<sup>a,b</sup> Min Luo,<sup>a,\*</sup> Dan Zhao,<sup>c</sup> Guang Peng,<sup>a,b</sup> Chensheng Lin,<sup>a</sup> and Ning

Ye<sup>a,\*</sup>

a. Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute

of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian,

350002, P. R. China

b. University of Chinese Academy of Sciences, Beijing 100049, P. R. China

c. Department of Physics and Chemistry, Henan Polytechnic University, Jiaozuo,

Henan 454000, China

Email: <u>lm8901@fjirsm.ac.cn</u> <u>nye@fjirsm.ac.cn</u>

| atom  | Х         | Y         | Ζ        | $U_{eq}(Å^2)$ |
|-------|-----------|-----------|----------|---------------|
| Ca(1) | 10000     | 10000     | 6379(4)  | 20(1)         |
| Ca(2) | 11483(3)  | 8517(3)   | 4587(5)  | 49(1)         |
| Na(2) | 11483(3)  | 8517(3)   | 4587(5)  | 49(1)         |
| Ca(3) | 9944(2)   | 4972(1)   | 5739(3)  | 21(1)         |
| Na(1) | 11843(2)  | 8157(2)   | 7512(3)  | 5(1)          |
| Na(3) | 13333     | 6667      | 3293(15) | 95(5)         |
| C(1)  | 13333     | 6667      | 5676(17) | 21(4)         |
| C(2)  | 14822(7)  | 9645(15)  | 8505(10) | 27(3)         |
| C(3)  | 8327(6)   | 6653(12)  | 6177(9)  | 19(2)         |
| C(4)  | 10000     | 10000     | 8605(16) | 20(5)         |
| O(1)  | 12598(4)  | 7402(4)   | 5655(7)  | 23(2)         |
| O(2)  | 7606(4)   | 5211(9)   | 6107(8)  | 31(2)         |
| O(3)  | 13804(8)  | 9790(8)   | 8964(6)  | 42(2)         |
| O(4)  | 14586(5)  | 9173(9)   | 7522(7)  | 29(2)         |
| O(5)  | 9806(6)   | 7401(6)   | 6192(6)  | 24(1)         |
| Na(3) | 13333     | 6667      | 3293(15) | 95(5)         |
| O(6)  | 10000     | 10000     | 9581(16) | 45(5)         |
| O(7)  | 10594(14) | 11190(30) | 8120(20) | 72(17)        |
| O(8)  | 11160(40) | 10580(20) | 8060(30) | 110(20)       |

Table S1. Atomic coordinates  $(x10^4)$  and equivalent isotropic displacement parameters  $(A^2x10^3)$  for Na<sub>6</sub>Ca<sub>5</sub>(CO<sub>3</sub>)<sub>8</sub>. U(eq) is defined as one third of the trace of the orthogonalized U<sub>ij</sub> tensor.

Table S2. Atomic coordinates  $(x10^4)$  and equivalent isotropic displacement parameters  $(A^2x10^3)$  for Na<sub>2</sub>Ca<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub>. U(eq) is defined as one third of the trace of the orthogonalized U<sub>ij</sub> tensor.

| atom  | X        | Y       | Z       | U <sub>eq</sub> (Å <sup>2</sup> ) |
|-------|----------|---------|---------|-----------------------------------|
| Ca(1) | 0        | 2832(1) | 4979(1) | 12(1)                             |
| Na(1) | -5000    | 5000    | 4293(3) | 16(1)                             |
| Na(2) | 0        | 0       | 6154(3) | 16(1)                             |
| O(1)  | -5000    | 1981(2) | 771(4)  | 19(1)                             |
| O(2)  | -2747(3) | 3457(2) | 2180(3) | 14(1)                             |
| C(1)  | -5000    | 2952(3) | 1720(5) | 11(1)                             |
| O(3)  | 0        | 0       | 437(5)  | 17(1)                             |
| O(4)  | 0        | 1013(2) | 3129(4) | 18(1)                             |
| C(2)  | 0        | 0       | 2273(7) | 11(1)                             |

| atom  | X       | Y        | Z       | $U_{eq}(Å^2)$ |
|-------|---------|----------|---------|---------------|
| Ca(1) | 3784(1) | 2043(1)  | 7229(1) | 15(1)         |
| Na(1) | 1053(1) | 592(2)   | 5827(1) | 24(1)         |
| Na(2) | 6486(1) | 594(2)   | 6113(1) | 28(1)         |
| C(1)  | 3747(2) | -1281(4) | 7216(3) | 14(1)         |
| C(2)  | 3859(3) | 2530(3)  | 4945(2) | 15(1)         |
| O(1)  | 4821(2) | -528(3)  | 7168(2) | 21(1)         |
| O(2)  | 2606(2) | -589(3)  | 7203(2) | 20(1)         |
| O(3)  | 3761(2) | -2751(3) | 7294(2) | 17(1)         |
| O(4)  | 4829(2) | 2954(3)  | 5567(2) | 25(1)         |
| O(5)  | 3593(2) | 3339(3)  | 4096(2) | 27(1)         |
| O(6)  | 3177(2) | 1374(2)  | 5217(2) | 27(1)         |

Table S3. Atomic coordinates  $(x10^4)$  and equivalent isotropic displacement parameters  $(A^2x10^3)$  for Na<sub>2</sub>Ca(CO<sub>3</sub>)<sub>2</sub>. U(eq) is defined as one third of the trace of the orthogonalized U<sub>ij</sub> tensor.

| Table S4. | Bond I | engths | (Å) for | Na <sub>6</sub> Ca <sub>5</sub> | $(CO_3)_8$ |
|-----------|--------|--------|---------|---------------------------------|------------|

|                |           | 576           |           |
|----------------|-----------|---------------|-----------|
| Ca(1)-O(6)#1   | 2.266(19) | C(2)-O(4)     | 1.306(15) |
| Ca(1)-O(8)     | 2.35(4)   | C(2)-Ca(3)#16 | 2.828(13) |
| Ca(1)-O(8)#2   | 2.35(4)   | C(2)-Na(1)#10 | 2.884(8)  |
| Ca(1)-O(8)#3   | 2.35(4)   | C(3)-O(2)     | 1.261(13) |
| Ca(1)-O(7)     | 2.43(3)   | C(3)-O(5)#4   | 1.290(7)  |
| Ca(1)-O(7)#3   | 2.43(3)   | C(3)-O(5)     | 1.290(7)  |
| Ca(1)-O(7)#2   | 2.43(3)   | C(3)-Ca(3)#17 | 2.929(6)  |
| Ca(1)-O(5)#4   | 2.537(5)  | C(4)-O(7)#2   | 1.20(3)   |
| Ca(1)-O(5)#3   | 2.537(5)  | C(4)-O(7)#3   | 1.20(3)   |
| Ca(1)-O(5)#2   | 2.537(5)  | C(4)-O(7)     | 1.20(3)   |
| Ca(1)-O(5)#5   | 2.537(5)  | C(4)-O(8)#3   | 1.22(4)   |
| Ca(1)-O(5)     | 2.537(5)  | C(4)-O(8)#2   | 1.22(4)   |
| Ca(2)-O(1)     | 2.365(9)  | C(4)-O(8)     | 1.22(4)   |
| Ca(2)-O(3)#6   | 2.381(7)  | C(4)-O(6)     | 1.23(3)   |
| Ca(2)-O(3)#7   | 2.381(7)  | C(4)-Ca(2)#16 | 2.868(10) |
| Ca(2)-O(8)#6   | 2.49(4)   | C(4)-Na(2)#16 | 2.868(10) |
| Ca(2)-O(5)#8   | 2.512(8)  | C(4)-Ca(2)#18 | 2.868(10) |
| Ca(2)-O(5)     | 2.512(8)  | C(4)-Na(2)#18 | 2.868(10) |
| Ca(2)-O(6)#1   | 2.587(5)  | O(1)-Ca(3)#10 | 2.570(2)  |
| Ca(2)-C(4)#1   | 2.868(10) | O(2)-Ca(3)#17 | 2.527(3)  |
| Ca(2)-O(7)#9   | 2.913(19) | O(3)-Na(2)#16 | 2.381(7)  |
| Ca(2)-O(7)#6   | 2.913(19) | O(3)-Ca(2)#16 | 2.381(7)  |
| Ca(2)-Ca(3)    | 3.424(4)  | O(3)-Ca(3)#16 | 2.496(8)  |
| Ca(2)-Ca(3)#10 | 3.424(4)  | O(4)-Ca(3)#10 | 2.375(10) |
| Ca(3)-O(4)#11  | 2.375(10) | O(4)-Na(1)#10 | 2.419(3)  |

| Ca(3)-O(3)#6  | 2.496(8)  | Na(3)-Na(2)#10 | 3.616(10) |
|---------------|-----------|----------------|-----------|
| Ca(3)-O(3)#12 | 2.496(8)  | Na(3)-Ca(2)#10 | 3.616(10) |
| Ca(3)-O(2)    | 2.527(3)  | Na(3)-Na(2)#11 | 3.616(10) |
| Ca(3)-O(2)#13 | 2.527(3)  | Na(3)-Ca(2)#11 | 3.616(10) |
| Ca(3)-O(1)    | 2.570(2)  | Na(3)-Ca(3)#10 | 4.271(14) |
| Ca(3)-O(1)#11 | 2.570(2)  | Na(3)-Ca(3)#11 | 4.271(14) |
| Ca(3)-O(5)    | 2.582(5)  | Na(3)-Ca(3)#19 | 4.305(15) |
| Ca(3)-O(5)#14 | 2.582(5)  | Na(3)-Ca(3)#1  | 4.305(15) |
| Ca(3)-C(2)#6  | 2.828(13) | O(6)-Ca(1)#16  | 2.266(19) |
| Ca(3)-C(3)    | 2.929(6)  | O(6)-Na(2)#18  | 2.587(5)  |
| Ca(3)-C(3)#13 | 2.929(6)  | O(6)-Ca(2)#16  | 2.587(5)  |
| Na(1)-O(7)#3  | 2.31(2)   | O(6)-Na(2)#16  | 2.587(5)  |
| Na(1)-O(4)    | 2.419(3)  | O(6)-Ca(2)#18  | 2.587(5)  |
| Na(1)-O(4)#11 | 2.419(3)  | O(6)-Ca(2)#20  | 2.587(5)  |
| Na(1)-O(5)    | 2.448(7)  | O(6)-Na(2)#20  | 2.587(5)  |
| Na(1)-O(5)#8  | 2.448(7)  | O(7)-O(8)#2    | 1.03(2)   |
| Na(1)-O(3)    | 2.590(8)  | O(7)-O(8)      | 1.03(2)   |
| Na(1)-O(3)#8  | 2.590(8)  | O(7)-O(7)#2    | 1.79(4)   |
| Na(1)-O(1)    | 2.685(9)  | O(7)-O(7)#3    | 1.79(4)   |
| Na(1)-C(2)    | 2.884(8)  | O(7)-Na(1)#2   | 2.31(2)   |
| Na(1)-C(2)#11 | 2.884(8)  | O(7)-Ca(2)#16  | 2.913(19) |
| Na(1)-O(8)#3  | 2.930(14) | O(7)-Na(2)#16  | 2.913(19) |
| Na(1)-O(8)    | 2.930(13) | O(7)-Na(2)#20  | 2.913(19) |
| C(1)-O(1)     | 1.283(6)  | O(7)-Ca(2)#20  | 2.913(19) |
| C(1)-O(1)#11  | 1.283(7)  | O(8)-O(7)#3    | 1.03(2)   |
| C(1)-O(1)#10  | 1.283(7)  | O(8)-O(8)#3    | 1.75(6)   |
| C(1)-Ca(3)#10 | 2.957(2)  | O(8)-O(8)#2    | 1.75(6)   |
| C(1)-Ca(3)#11 | 2.957(2)  | O(8)-Na(2)#16  | 2.49(4)   |
| C(1)-Na(3)    | 3.00(3)   | O(8)-Ca(2)#16  | 2.49(4)   |
| C(2)-O(3)#15  | 1.249(9)  | O(8)-Na(1)#2   | 2.930(13) |
| C(2)-O(3)     | 1.249(9)  |                |           |

Symmetry transformations used to generate equivalent atoms:

#1 x-y+1,x,z-1/2 #2 -y+2,x-y+1,z #3 -x+y+1,-x+2,z #4 -x+y+1,y,z #5 x,x-y+1,z #6 y,-x+y+1,z-1/2 #7 x-y+1,-y+2,z-1/2 #8 -y+2,-x+2,z #9 -x+2,-y+2,z-1/2 #10 -x+y+2,-x+2,z #11 -y+2,x-y,z #12 y,x-1,z-1/2 #13 -x+y+1,-x+1,z #14 x,x-y,z #15 -x+y+2,y,z #16 x-y+1,x,z+1/2 #17 -y+1,x-y,z #18 y,-x+y+1,z+1/2 #19 -x+2,-y+1,z-1/2 #20 -x+2,-y+2,z+1/2

| Table 55. Dond lengths $(11)$ for $102$ Ca <sub>2</sub> (CO <sub>3</sub> ) <sub>3</sub> |          |  |
|-----------------------------------------------------------------------------------------|----------|--|
| O(1)-C(1)                                                                               | 1.269(4) |  |
| O(2)-C(1)                                                                               | 1.295(3) |  |
| C(1)-O(2)#1                                                                             | 1.295(3) |  |
| O(3)-C(2)                                                                               | 1.308(6) |  |
| O(4)-C(2)                                                                               | 1.277(4) |  |
| C(2)-O(4)#2                                                                             | 1.277(4) |  |

Table S5. Bond lengths (Å) for Na<sub>2</sub>Ca<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub>

Symmetry transformations used to generate equivalent atoms:

#1 -x-1,y,z #2 -x,-y,z

| Table S6. Bond l | engths (Å) for Na <sub>2</sub> C | $a(CO_3)_2$                 |            |
|------------------|----------------------------------|-----------------------------|------------|
| 0 (1) 0(5) //1   | 2 215(2)                         | $N_{1}(2) = C_{1}(1) // 10$ | 2 2220(15) |

| Ca(1)-O(5)#1  | 2.315(2)   | Na(2)-Ca(1)#10 | 3.3229(15) |
|---------------|------------|----------------|------------|
| Ca(1)-O(4)    | 2.422(2)   | Na(2)-Na(1)#9  | 3.580(2)   |
| Ca(1)-O(1)    | 2.479(2)   | Na(2)-Ca(1)#11 | 3.7189(17) |
| Ca(1)-O(2)#2  | 2.498(2)   | Na(2)-Na(1)#10 | 3.766(2)   |
| Ca(1)-O(3)#3  | 2.5396(17) | C(1)-O(1)      | 1.265(3)   |
| Ca(1)-O(3)#2  | 2.5629(17) | C(1)-O(3)      | 1.289(4)   |
| Ca(1)-O(2)    | 2.589(2)   | C(1)-O(2)      | 1.296(3)   |
| Ca(1)-O(6)    | 2.601(2)   | C(1)-Ca(1)#5   | 2.934(3)   |
| Ca(1)-O(1)#3  | 2.649(2)   | C(1)-Ca(1)#11  | 2.959(3)   |
| Ca(1)-C(2)    | 2.826(3)   | C(2)-O(6)      | 1.266(3)   |
| Ca(1)-C(1)    | 2.908(4)   | C(2)-O(5)      | 1.284(3)   |
| Ca(1)-C(1)#2  | 2.934(3)   | C(2)-O(4)      | 1.290(3)   |
| Na(1)-O(3)#2  | 2.314(3)   | C(2)-Na(1)#2   | 2.889(3)   |
| Na(1)-O(6)    | 2.361(2)   | C(2)-Na(1)#8   | 2.905(3)   |
| Na(1)-O(4)#4  | 2.456(2)   | C(2)-Na(2)#9   | 3.044(3)   |
| Na(1)-O(4)#5  | 2.492(3)   | O(1)-Ca(1)#11  | 2.649(2)   |
| Na(1)-O(2)    | 2.515(3)   | O(1)-Na(1)#10  | 2.915(3)   |
| Na(1)-O(5)#4  | 2.643(3)   | O(2)-Ca(1)#5   | 2.498(2)   |
| Na(1)-C(2)#5  | 2.889(3)   | O(2)-Na(2)#6   | 2.564(3)   |
| Na(1)-C(2)#4  | 2.905(3)   | O(3)-Na(1)#5   | 2.314(3)   |
| Na(1)-O(5)#5  | 2.914(3)   | O(3)-Na(2)#11  | 2.439(3)   |
| Na(1)-O(1)#6  | 2.915(3)   | O(3)-Ca(1)#11  | 2.5396(17) |
| Na(1)-Na(1)#7 | 3.104(3)   | O(3)-Ca(1)#5   | 2.5629(17) |
| Na(2)-O(5)#8  | 2.327(2)   | O(4)-Na(1)#8   | 2.456(2)   |
| Na(2)-O(1)    | 2.329(3)   | O(4)-Na(1)#2   | 2.492(3)   |
| Na(2)-O(6)#9  | 2.392(3)   | O(5)-Ca(1)#12  | 2.315(2)   |
| Na(2)-O(3)#3  | 2.439(3)   | O(5)-Na(2)#4   | 2.327(2)   |
| Na(2)-O(2)#10 | 2.564(3)   | O(5)-Na(1)#8   | 2.643(3)   |
| Na(2)-O(4)    | 2.734(3)   | O(5)-Na(1)#2   | 2.914(3)   |
| Na(2)-C(2)#9  | 3.044(3)   | O(6)-Na(2)#9   | 2.392(3)   |

| Crystals(n)                                                     | <b>g</b> <sub>311/n</sub> | <b>g</b> <sub>322/n</sub> | g <sub>333/n</sub> |
|-----------------------------------------------------------------|---------------------------|---------------------------|--------------------|
| Na <sub>6</sub> Ca <sub>5</sub> (CO <sub>3</sub> ) <sub>8</sub> |                           |                           |                    |
| (n=2)                                                           | 0.133                     | -                         | 0.196              |
| $Na_2Ca_2(CO_3)_3$                                              |                           |                           |                    |
| (n=2)                                                           | 0.355                     | 0.079                     | 0.434              |

Table S7. The contribution of different geometrical factors (g) for structurefactors (C)



Figure S1. X-ray powder diffraction patterns of Na<sub>6</sub>Ca<sub>5</sub>(CO<sub>3</sub>)<sub>8</sub>, Na<sub>2</sub>Ca<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub> and Na<sub>2</sub>Ca(CO<sub>3</sub>)<sub>2</sub> (**black colour** is crystal sample; **red colour** is simulation results)



Figure S2. TG curves of (a)  $Na_6Ca_5(CO_3)_8$ , (b)  $Na_2Ca_2(CO_3)_3$  and (c)  $Na_2Ca(CO_3)_2$ .



Figure S3. X-ray powder diffraction patterns of Na\_6Ca\_5(CO\_3)\_8 at 520  $^\circ C$  .



Figure S4. The standing-on-edge  $[CO_3]^{2-}$  groups in  $Na_6Ca_5(CO_3)_8$ 



Figure S5. The standing-on-edge  $[\mathrm{CO}_3]^{2\text{-}}$  groups in  $\mathrm{Na}_2\mathrm{Ca}_2(\mathrm{CO}_3)_3$ 



Figure S6 Diffuse reflectance absorption curves of the powder samples of (a)  $Na_6Ca_5(CO_3)_8$ , (b)  $Na_2Ca_2(CO_3)_3$  and (c)  $Na_2Ca(CO_3)_2$ 



Figure S7. The calculated band structures for (a)  $Na_6Ca_5(CO_3)_8$ , (b)  $Na_2Ca_2(CO_3)_3$  and (c)  $Na_2Ca(CO_3)_2$ 

## The Anionic Group Theory Calculation.

The macroscopic second-order susceptibility  $\chi$  <sup>(2)</sup> could be expressed by Eq. 3 according to the anionic group theory.

$$\boldsymbol{x}_{ijk}^{(2)} = \frac{F}{V} \sum_{\mathbf{p}} \sum_{i'j'k'} \boldsymbol{\alpha}_{ii'} \boldsymbol{\alpha}_{jj'} \boldsymbol{\alpha}_{kk'} \boldsymbol{\beta}_{i'jk'}^{(2)}(\mathbf{P}),$$
(1)

where F is the correction factor of the localized field, V is the volume of the unit cell, $\alpha_{ii}$ ,  $\alpha_{jj}$ , and  $\alpha_{kk'}$  are the direction cosines between the macroscopic coordinates axes of the crystal and the microscopic coordinates axes of [CO<sub>3</sub>] or [BO<sub>3</sub>] groups, and  $\beta_{rj'k'}$  is the microscopic second-order susceptibility tensors of an individual group, which can be calculated with quantum chemistry method.

Because [CO<sub>3</sub>] and [BO<sub>3</sub>] is a planar group in point group D<sub>3h</sub>, in the Kleinman approximation, there are only two nonvanishing second-order susceptibility  $\beta_{111}^{(2)} = -\beta_{122}^{(2)}$ . The geometrical factor, g, could be derived from Eq. (1). and Eq. (2) could be simplified according to the deduction process<sup>44</sup>:

$$x_{ijk}^{(2)} = \frac{F}{V} \cdot g_{ijk} \cdot \beta_{111}^{(2)}$$
(2)

 $g=max(g_{ijk}); (i,j,k=1,2,3)$  (3)

In case of unspontaneous polarization, the structural criterion C is defined as:

$$C = \frac{g}{n} \tag{4}$$

where n is the number of anionic groups in a unit cell.