ELECTRONIC SUPPLEMENTARY INFORMATION

Solution synthesis of few-layer WTe₂ and Mo_xW_{1-x}Te₂ nanostructures

Yifan Sun^{ad}, Kazunori Fujisawa^{bd}, Mauricio Terrones^{abcd}*, and Raymond E. Schaak^{ad}*

^a Department of Chemistry and Materials Research Institute, ^b Department of Physics, ^c Department of Materials Science and Engineering, and ^d Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA 16802

E-mail: res20@psu.edu, mut11@psu.edu

Supplementary Tables

Table S1. Experimental parameters for the synthesis of Mo_xW_{1-x}Te₂ nanostructures.

Mo _x W _{1-x} Te ₂	WCl ₆ / mmol	MoCl ₆ / mmol	Te / mmol
T _d -WTe ₂	0.15	0	1.2
$\mathbf{x} = 0.19$	0.8×0.15	0.2×0.15	1.2
$\mathbf{x} = 0.39$	0.6×0.15	0.4×0.15	1.2
x = 0.52	0.4×0.15	0.6×0.15	1.2
$\mathbf{x} = 0.80$	0.2×0.15	0.8×0.15	1.2
1T'-MoTe ₂	0	0.15	1.2

Supplementary Figures

Fig. S1 (a) Simulated ADF images of bilayer WTe_2 with T_d stacking. (b) 2H- and 2H'-analogous stacking of WTe_2 layers, highlighted by red and yellow circles, respectively.

Fig. S2 (a) XPS survey scan for the as-prepared WTe₂ nanostructures, showing the presence of W, Te, C, and O. (b) XPS spectra for the WTe₂ nanostructures with (b) Te 4*d* and (c) W 4*f* regions. The minor shoulder peaks at higher binding energy could be due to potential oxidation introduced during the washing process.

Fig. S3 Powder XRD patterns of the WTe₂ nanostructures obtained after (a) 5 min, (b) 10 min, (c) 15 min, (d) 20 min, (e) 25 min, and (f) 30 min.

Fig. S4 TEM images (500 nm scale bars) for $Mo_xW_{1-x}Te_2$ with x = (a) 0, (b) 0.19, (c) 0.39, (d) 0.52, (e) 0.80 and (f) 1.

Fig. S5 HAADF-STEM images and corresponding STEM-EDS element maps for the $Mo_xW_{1-x}Te_2$ nanostructures, indicating a uniform distribution of Mo, W, and Te.

Fig. S6 EDS spectra for the $Mo_xW_{1-x}Te_2$ nanostructures. The Cu signal comes from the Cu TEM grids.