## Supporting Information

Title: Solvent-cast based Metal 3D Printing and Secondary Metallic Infiltration

Chao Xu<sup>1</sup>, Arslane Bouchemit<sup>1</sup>, Gilles L'Espérance<sup>1</sup>, Louis Laberge Lebel<sup>1</sup> and Daniel Therriault<sup>1\*</sup>

1 Department of mechanical engineering, Polytechnique Montreal, Montreal, QC H3T 1J4

Keywords: 3D printing, solvent-cast, metal, sintering, metallic infiltration



Figure S1. Secondary electron micrograph of HAS powder particles ( $\leq 20 \ \mu m$ ).

|                    | 1           | 0           |             |             |
|--------------------|-------------|-------------|-------------|-------------|
| Ink constituent    | 85 wt.% (47 | 90 wt.% (59 | 95 wt.% (75 | 98 wt.% (90 |
|                    | vol.%)      | vol.%)      | vol.%)      | vol.%)      |
|                    | HAS/PLA ink | HAS/PLA ink | HAS/PLA ink | HAS/PLA ink |
|                    | [g]         | [g]         | [g]         | [g]         |
| PLA                | 15          | 10          | 5           | 2           |
| DCM                | 60          | 40          | 20          | 18          |
| HAS microparticles | 85          | 90          | 95          | 98          |

Table S1. Ink formulations created for 3D printing



**Figure S2.** SEM images of as-printed 20-layers scaffolds of different concentrated inks (85, 90, 95, 98 wt.%) (first row from left to right) and their close-up view images (middle and bottom rows). The HAS microparticles are covered and bonded by the polymer. The filaments of all four scaffolds align well. However, the 85 wt.% scaffold distorts and the surface of the 98 wt.% scaffold is rough.



**Figure S3.** SEM images of sintered 20-layers scaffolds of different concentrated inks (85, 90, 95, 98 wt.%) (first row from left to right) and their close-up view images (middle and bottom rows). After sintering, the polymer is burned away and the HAS microparticles are sintered together. The filaments of 90, 95 and 98 wt.% scaffold keep their shapes and align well, while the 85 wt.% ink printed scaffold collapses during sintering and the surface of 98 wt.% scaffold is rough.



**Figure S4.** SEM images of copper infiltrated 20-layers scaffolds of different concentrated inks (90, 95, 98 wt.%) (first row from left to right) and their close-up view images (middle and bottom rows). Melted copper infiltrated into the sintered filaments. Some excessed copper is left on the top of the scaffold.



**Figure S5.** TGA results of 95 wt.% HAS/PLA scaffold. The temperature is raised from 20 °C to 500 °C at a rate of 1 °C/min (the same heating rate as the sintering process). The degradation of PLA finishes before 225 °C.



**Figure S6.** Temperature profiles using during sintering and copper infiltration. Debinding starts from 25 °C to 300 °C with a heating rate of 60 °C/h. Then the temperature is raised up to 1165 °C with a heating rate of 600 °C/h and held at 1165 °C for 6h for sintering. For copper infiltration, the temperature is raised up to 1120 °C and held for 0.5 h, then cooled down to the room temperature.

**Table S2.** Preliminary shrinkage analysis results of 85, 90, 95 and 98 wt.% as-printed, sintered (6h) and copper infiltrated 20-layer scaffolds. The values shown are the heights of the scaffolds compared to the as-programmed height value.

|                    | 85 wt.%<br>(47 vol.%)<br>HAS/PLA ink | 90 wt.%<br>(59 vol.%)<br>HAS/PLA ink | 95 wt.%<br>(75 vol.%)<br>HAS/PLA ink | 98 wt.%<br>(90 vol.%)<br>HAS/PLA ink |
|--------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| As-programmed      | 100%                                 | 100%                                 | 100%                                 | 100%                                 |
| As-printed         | 101.4%*                              | 101.1%*                              | $101.2\% \pm 0.7\%$                  | 100.7%*                              |
| Sintered           | N/A**                                | 81.3%*                               | $85.9\% \pm 0.6\%$                   | 89.1%*                               |
| Copper infiltrated | N/A**                                | 85.7%*                               | $89.7\% \pm 0.8\%$                   | 92.2%*                               |

\*The value is measured on a single sample.

\*\*The value is not available since the 85 wt.% scaffold collapsed during sintering.

Table S3. Porosity analysis results of 90, 95 and 98 wt.% sintered (6h) and copper infiltrated 20-layer

scaffolds.

| Porosity                  | 90 wt.%             | 95 wt.%             | 98 wt.%             |
|---------------------------|---------------------|---------------------|---------------------|
| Sintered                  | $10.4\% \pm 4.4\%$  | 12.1 % ± 5.3 %      | $12.4\% \pm 2.0\%$  |
| <b>Copper infiltrated</b> | $0.3 \% \pm 0.3 \%$ | $0.2 \% \pm 0.1 \%$ | $0.2 \% \pm 0.2 \%$ |

**Table S4.** Tensile test results of 95 wt.% as-printed, sintered and copper infiltrated tensile bars compared with: (1) Wrought stainless steel<sup>42</sup>, (2) Nitrogen alloyed, high strength, medium elongation, sintered at 1290 °C (2350 °F) in dissociated ammonia<sup>43</sup>, (3) PM steel containing 0.8% carbon and 2% copper<sup>43</sup>, and (4) Copper infiltrated steel containing 0.8% carbon<sup>43</sup>.

|                                           | Е             | UTS            | Elongation      |
|-------------------------------------------|---------------|----------------|-----------------|
|                                           | [GPa]         | [MPa]          | [%]             |
| As-printed sample                         | $3.1 \pm 0.3$ | $28.0 \pm 3.0$ | $1.45 \pm 0.10$ |
| Sintered sample                           | $196 \pm 16$  | $485 \pm 70$   | $0.47\pm0.06$   |
| Copper infiltrated sample                 | $195 \pm 16$  | $511 \pm 57$   | $0.77\pm0.07$   |
| Wrought stainless steel: SS-316 (1)       | 193           | 515            | 30              |
| PM steel stainless steel: SS-316N2-38 (2) | 140           | 480            | 13              |
| PM steel FC-0208-60 (3)                   | 155           | 520            | < 1             |
| Cu infiltrated PM steel: FX-2008-60 (4)   | 145           | 550            | 1               |

Movie S1. 3D printing of an 8-layers tensile bars with 95 wt.% ink and 250  $\mu$ m tapered nozzle at a speed of 10 mm/s.