Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Thermostable birefringent copolyimide films based on azobenzene-

containing pyrimidine diamines

Faqin Tong, Zhao Chen, Xuemin Lu*, and Qinghua Lu*

School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and

Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

Figure S1. ¹³C NMR spectra of diamines in [D₆] DMSO.

Figure S2. UV-vis absorption spectra of the PAAs of Plx-S2 in DMAc solution (concentration 0.05 mg/mL).

Figure S3. UV-vis absorption spectra of the PAAs of **PIx-S4** in DMAc solution (concentration 0.05 mg/mL).

Figure S7. ATR FTIR spectra of Plx-S9.

Fi

Figure S8. Optical photographs of Plx-S2 films.

Figure S10. Optical photographs of Plx-S9 films.

PIs	Tg ^b (°C)	<i>T</i> d5 ^c (°C)	<i>T</i> _{d10} ^c (°C)	R _w ^d (%)	M _n ^e (×10 ⁻⁴)	М _w ^е (×10 ⁻⁴)	$M_{\rm w}/M_{\rm n}$
PI ₀ ^a	245	514	552	54.9	12.09	23.15	1.91
PI ₁ -S2	229	394	500	57.3	3.71	7.75	2.09
PI ₂ -S2	207	376	432	55.2	1.81	4.57	2.52
PI₃-S2	202	374	407	51.7	1.09	3.19	2.92
PI ₁ -S4	235	465	492	56.9	3.59	7.69	2.14
PI ₂ -S4	219	431	458	46.5	2.78	5.35	1.93
PI3-S4	199	401	435	53.7	1.57	3.02	1.93
PI1-S6	224	453	522	56.5	2.67	5.18	1.94
PI ₂ -S6	214	424	465	47.3	2.28	4.15	1.82
PI3-S6	196	414	444	49.3	1.78	4.29	2.41
PI ₁ -S9	226	412	465	51.8	1.60	3.94	2.46
PI ₂ -S9	191	400	440	50.1	1.24	3.49	2.81
PI ₃ -S9	174	370	408	40.7	1.59	3.69	2.32

 Table S1. Thermal performances of PIs and molecular weights of PAAs.

^a PI_0 was prepared by polymerization of ODA and ODPA. ^b From the second DSC heating scan at a heating rate of 20 °C/min in nitrogen. ^c Temperatures corresponding to 5% and 10% weight losses by thermogravimetry at a heating rate of 20 °C/min in nitrogen. ^d Residual weight % at 700 °C. ^e Measured by GPC in DMF; polystyrene was used as a standard.

Sample ID	Sn:ODA	Film quality	Tensile strength (MPa)	Elongation at break (%)	Tensile modulus (GPa)
PI ₀ ^a	0:1	flexible	126.8	9.6	2.34
PI₁-S2	1:9	flexible	139.1	7.6	2.75
PI ₂ -S2	2:8	flexible	81.9	3.7	1.98
PI ₃ -S2	3:7	rigid			
PI1-S4	1:9	flexible	109.1	6.6	2.10
PI ₂ -S4	2:8	flexible	94.3	5.5	1.97
PI ₃ -S4	3:7	flexible	64.3	3.1	3.02
PI₁-S6	1:9	flexible	94.2	5.1	1.94
PI ₂ -S6	2:8	flexible	96.7	5.0	2.15
PI ₃ -S6	3:7	flexible	83.5	5.3	2.19
PI ₁ -S9	1:9	flexible	75.2	3.8	2.16
PI ₂ -S9	2:8	flexible	65.6	4.3	2.02
PI ₃ -S9	3:7	flexible	73.9	4.8	1.85

Table S2.	Sample IDs,	compositions,	and mechanical	properties of	co-polyimide films.
-----------	-------------	---------------	----------------	---------------	---------------------

^a PI₀ was prepared by polymerization of ODA and ODPA.

The ¹H NMR of PAAs and elemental analysis of PIs were recorded to confirm the synthesis of azo-PIs as following:

PAA₀: ¹H NMR (400 MHz, [D6] DMSO, δ (ppm)): 6.99 (ArH, 4H), 7.22 (ArH, 4H), 7.70 (ArH, 4H), 7.98 (ArH, 3H); 10.42 (CONH, 2H), 10.59 (CONH, 2H). **PI**₀: Anal. Calcd. for C₂₈₀H₁₄₀N₂₀O₆₀ (4740): C, 70.88%; N, 5.91%; H, 3.38%. Found: C, 69.38%; N, 5.86%; H, 3.33%.

PAA₁-S2: ¹H NMR (400 MHz, [D₆] DMSO, δ(ppm)): 3.39 (SCH₂, 2H), 3.83 (OCH₃, 3H), 4.22 (OCH₂, 2H), 5.18 (ArH, 1H), 7.07 (ArH, 4H), 7.24 (ArH, 4H), 7.48 (ArH,4H), 7.65 (ArH, 4H), 7.82 (ArH,4H), 7.95 (ArH, 4H), 10.40 (CONH, 2H), 10.71 (CONH, 2H), 13.23 (COOH, 4H). **PI₁-S2**: Anal. Calcd. for $C_{287}H_{148}N_{24}O_{61}S$ (4936): C, 69.77%; N, 6.81%; H, 2.99%. Found: C, 68.58%; N, 6.80%; H, 3.42%.

PAA₂-S2: ¹H NMR (400 MHz, [D₆] DMSO, δ(ppm)): 3.36 (SCH₂, 2H), 3.81

(OCH₃, 3H), 4.24 (OCH₂, 2H), 5.16 (ArH, 1H), 7.01 (ArH, 4H), 7.25 (ArH, 4H), 7.48 (ArH,4H), 7.67 (ArH, 4H), 7.83 (ArH,4H), 7.96 (ArH, 4H), 10.37 (CONH, 2H), 10.61 (CONH, 2H), 13.19 (COOH, 4H). **PI₂-S2**: Anal. Calcd. for C₂₉₄H₁₅₆N₂₈O₆₂S₂ (5133): C, 68.73%; N, 7.64%; H, 3.04%. Found: C, 68.47%; N, 7.43%; H, 3.27%.

PAA₃-S2: ¹H NMR (400 MHz, [D₆] DMSO, δ (ppm)): 3.37 (SCH₂, 2H), 3.79 (OCH₃, 3H), 4.27 (OCH₂, 2H), 5.09 (ArH, 1H), 7.08 (ArH, 4H), 7.23 (ArH, 4H), 7.47 (ArH,4H), 7.65 (ArH, 4H), 7.81 (ArH,4H), 7.94 (ArH, 4H), 10.33 (CONH, 2H), 10.51 (CONH, 2H), 13.25 (COOH, 4H). **PI₃-S2**: Anal. Calcd. for C₃₀₁H₁₆₄N₃₂O₆₃S₃ (5329): C, 67.78%; N, 8.41%; H, 3.08%. Found: C, 67.39%; N, 8.24%; H, 3.37%.

PAA₁-S4: ¹H NMR (400 MHz, [D₆] DMSO, δ(ppm)): 1.80 (SCH₂CH₂, 2H), 1.85 (CH₂CH₂O, 2H), 3.04 (SCH₂, 2H), 3.83 (OCH₃, 3H), 4.08 (OCH₂, 2H), 5.18 (ArH, 1H), 6.93 (ArH, 4H), 7.11 (ArH, 4H), 7.21 (ArH,4H), 7.46 (ArH, 4H), 7.64 (ArH,4H), 7.93 (ArH, 4H), 10.34 (CONH, 2H), 10.42 (CONH, 2H), 13.25 (COOH, 4H). **PI₁-S4**: Anal. Calcd. for C₂₈₉H₁₅₂N₂₄O₆₁S (4965): C, 69.85%; N, 6.77%; H, 3.06%. Found: C, 69.27%; N, 6.83%; H, 3.32%.

PAA₂-S4: ¹H NMR (400 MHz, [D₆] DMSO, δ(ppm)): 1.77 (SCH₂CH₂, 2H), 1.84 (CH₂CH₂O, 2H), 3.08 (SCH₂, 2H), 3.83 (OCH₃, 3H), 4.08 (OCH₂, 2H), 5.16 (ArH, 1H), 6.92 (ArH, 4H), 7.08 (ArH, 4H), 7.27 (ArH,4H), 7.43 (ArH, 4H), 7.72 (ArH,4H), 7.98 (ArH, 4H), 10.40 (CONH, 2H), 10.64 (CONH, 2H), 13.17 (COOH, 4H). **PI₂-S4**: Anal. Calcd. for C₂₉₈H₁₆₄N₂₈O₆₂S₂ (5189): C, 68.92%; N, 7.55%; H, 3.16%. Found: C, 68.26%; N, 7.42%; H, 3.46%.

PAA₃-S4: ¹H NMR (400 MHz, [D₆] DMSO, δ(ppm)): 1.75 (SCH₂CH₂, 2H), 1.83 (CH₂CH₂O, 2H), 3.06 (SCH₂, 2H), 3.83 (OCH₃, 3H), 4.08 (OCH₂, 2H), 5.17(ArH, 1H), 6.94 (ArH, 4H), 7.10 (ArH, 4H), 7.24(ArH,4H), 7.43 (ArH, 4H), 7.70 (ArH,4H), 7.94 (ArH, 4H), 10.37 (CONH, 2H), 10.41 (CONH, 2H), 13.19 (COOH, 4H). **PI₃-S4**: Anal. Calcd. for $C_{307}H_{176}N_{32}O_{63}S_3$ (5413): C, 68.06%; N, 8.28%; H, 3.25%. Found: C, 67.92%; N, 8.16%; H, 3.17%.

PAA₂-S6: ¹H NMR (400 MHz, [D6] DMSO, δ(ppm)): 1.41–1.43 (OCH₂CH₂C₂H₄CH₂CH₂S, 4H), 1.60 (SCH₂CH₂, 2H), 1.75 (OCH₂CH₂, 2H), 2.98 (SCH₂, 2H), 3.85 (OCH₃, 3H), 4.06 (OCH₂, 2H), 5.14 (ArH, 1H), 7.11 (ArH, 4H), 7.23 (ArH, 4H), 7.52 (ArH,4H), 7.71 (ArH, 4H), 7.80 (ArH,4H), 7.93(ArH, 4H), 10.36 (CONH, 2H), 10.41 (CONH, 2H), 13.13 (COOH, 4H). **PI₂-S6**: Anal. Calcd. for $C_{302}H_{172}N_{28}O_{62}S_2$ (5245): C, 69.09%; N, 7.47%; H, 3.28%. Found: C, 68.31%; N, 7.26%; H, 3.89%.

PAA₃-S6: ¹H NMR (400 MHz, [D6] DMSO, δ (ppm)): 1.41–1.45 (OCH₂CH₂C₂H₄CH₂CH₂S, 4H), 1.62 (SCH₂CH₂, 2H), 1.75 (OCH₂CH₂, 2H), 2.95 (SCH₂, 2H), 3.83 (OCH₃, 3H), 4.05 (OCH₂, 2H), 5.17 (ArH, 1H), 7.10 (ArH, 4H), 7.22 (ArH, 4H), 7.53 (ArH,4H), 7.67 (ArH, 4H), 7.81 (ArH,4H), 7.93 (ArH, 4H), 10.34 (CONH, 2H), 10.43 (CONH, 2H), 13.03 (COOH, 4H). **PI₃-S6**: Anal. Calcd. for C₃₁₃H₁₈₈N₃₂O₆₃S₃ (5497): C, 68.33%; N, 8.15%; H, 3.42%. Found: C, 67.92%; N, 8.06%; H, 3.63%.

PAA₁-S9: ¹H NMR (400 MHz, [D₆] DMSO, δ (ppm)): 1.73–1.35 (OCH₂C₇H₁₄CH₂S, 14H), 2.94 (SCH₂, 2H), 3.77 (OCH₃, 3H), 3.99 (OCH₂, 2H), 5.17 (ArH, 1H), 6.92 (ArH, 4H), 7.11 (ArH, 4H), 7.24(ArH,4H), 7.45 (ArH, 4H), 7.67

(ArH,4H), 7.97 (ArH, 4H), 10.38 (CONH, 2H), 10.44 (CONH, 2H), 13.18 (COOH, 4H). **PI₁-S9**: Anal. Calcd. for C₂₉₄H₁₆₂N₂₄O₆₁S (5035): C, 76.74%; N, 8.89%; H, 4.09%. Found: C, 75.37%; N, 8.73%; H, 4.18%.

PAA₂-S9: ¹H NMR (400 MHz, [D₆] DMSO, δ(ppm)): 1.71–1.34 (OCH₂C₇H₁₄CH₂S, 14H), 2.93 (SCH₂, 2H), 3.76 (OCH₃, 3H), 4.02 (OCH₂, 2H), 5.16 (ArH, 1H), 6.91 (ArH, 4H), 7.10 (ArH, 4H), 7.26 (ArH,4H), 7.43 (ArH, 4H), 7.66 (ArH,4H), 7.93 (ArH, 4H), 10.37 (CONH, 2H), 10.41 (CONH, 2H), 13.26 (COOH, 4H). **PI₂-S9**: Anal. Calcd. for $C_{308}H_{184}N_{28}O_{62}S_2$ (5329): C, 69.36%; N, 7.35%; H, 3.45%. Found: C, 69.71%; N, 7.17%; H, 3.39%.

PAA₃-S9: ¹H NMR (400 MHz, [D₆] DMSO, δ (ppm)): 1.73–1.32 (OCH₂C₇**H**₁₄CH₂S, 14H), 2.94 (SCH₂, 2H), 3.75 (OCH₃, 3H), 4.05 (OCH₂, 2H), 5.19 (ArH, 1H), 6.94 (ArH, 4H), 7.12 (ArH, 4H), 7.25 (ArH,4H), 7.40 (ArH, 4H), 7.68 (ArH,4H), 8.02 (ArH, 4H), 10.35 (CONH, 2H), 10.42 (CONH, 2H), 13.11 (COOH, 4H). **PI₃-S9**: Anal. Calcd. for C₃₂₂H₂₀₆N₃₂O₆₃S₃ (5623): C, 68.72%; N, 7.97%; H, 3.66%. Found: C, 68.37%; N, 7.87%; H, 3.94%.