Two-Dimensional GaGeTe Film: A Promising Graphene-Like Material with Tunable Band Structure and High Carrier Mobility

Jin Zhang, ¹ Sheng-shi Li, ² Wei-xiao Ji, ¹ Chang-wen Zhang, ¹* Ping Li, ¹ Shu-feng Zhang, ¹ Peiji Wang ¹, and Shi-shen Yan ² ¹ School of Physics and Technology, University of Jinan, Jinan, Shandong, 250022, People's Republic of China ² School of Physics, State Key laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, People's Republic of China

Table S1 The optimized lattice constants (*a*), bond length for Ge-Ge, Ge-Ga and Ga-Te, bond angle \leq Ge-Ge-Ge, buckling height $h_{\text{Ge-Ge}}$, band gap without SOC in GaGeTe films respectively.

Layers	a (Å)	d(Ge-Ge)	d(Ge-Ga)	d(Ga-	<ge-ge-< th=""><th>h_{Ge-Ge}</th><th>Gap (w/o</th><th>Gap(w/S</th></ge-ge-<>	h _{Ge-Ge}	Gap (w/o	Gap(w/S
				Te)	Ge		SOC)	OC)
1N	4.153	2.524	2.485	2.709	110.35	0.0248	0.743	0.745
2N	4.134	2.521	2.478	2.694	110.07	0.0191	0.656	0.544
3N	4.131	2.519	2.474	2.691	110.07	0.0152	0.513	0.466
4N	4.126	2.514	2.471	2.682	110.08	0.0101	0.338	0.388
5N	4.123	2.509	2.468	2.680	110.12	0.0092	0.217	0.213
6N	4.114	2.507	2.463	2.676	110.12	0.0087	0.153	0.124

Figure S1 The calculated band structure of 3D bulk GaGeTe crystal. It shows a semimetal nature with a zero density of states at A point, in analogy to pristine germanene.

Figure S2 The calculated band structure of GaGeTe monolayer with the inclusion of SOC. Obviously, there is only a light influence on the band structure in particular concerning band gap when considering the effect of SOC.