Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Novel Photo- and Hydrochromic Europium Metal–Organic Framework with

Highly Sensing Property for Anions

Chenghui Zhang, Libo Sun, Yan Yan, Huaizhong Shi, Bolun Wang, Zhiqiang Liang* and Jiyang Li*

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry,

College of Chemistry, Jilin University, Changchun 130012, P. R. China.

Determination of the detection limit

Detection limit of **1'** for $Cr_2O_7^{2-}$ and CrO_4^{2-} anions was determined according to the following definitions:

$$S_{b} = \sqrt{\frac{\sum_{i=1}^{n} (x - \bar{x})^{2}}{n - 1}}$$
(1)
$$S = \frac{\Delta I}{\Delta c}$$
(2)
$$DL = \frac{3s_{b}}{S}$$
(3)

Firstly, the standard deviation (sb) was calculated by measuring the fluorescence intensity of the hybrid film in pure water for more than 10 times and then got the average intensity. By fitting the data into equation 1, the value of standard deviation (S_b) was obtained. Secondly, a certain amount of analyte was added into the solvent and the resulting variation of the intensity (ΔI) was recorded. By fitting the data into equation 2, where ΔI is the variation of intensity, and Δc is the variation of quencher concentration, the value of precision S was calculated. Finally the detection limit, DL, was calculated according to Function 3.

compound	1
formula	$C_{36}EuO_{17}N_4H_{40}$
fw	1013.86
temp (K)	293(2) K
wavelength (Å)	0.71073
Crystal system	Triclinic
space group	<i>P</i> -1
<i>a</i> (Å)	9.7352(5)
<i>b</i> (Å)	14.1265(7)
<i>c</i> (Å)	14.9366(8)
V (Å ³)	1810.23(16)
Ζ	2
F(000)	875
θ range (deg)	1.54 to 26.30
reflections collected/unique	11642 / 7338
R _{int}	0.0155
data / restraints /params	7338 / 0 / 412
GOF on F^2	1.069
$R_{1,} w R_2 a [I > 2\sigma(I)]$	0.0402, 0.1100
$R_{1,} w R_2$ (all data)	0.0434, 0.1124

 Table S1 Crystal data and structure refinements for 1.

^a $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|$. $wR_2 = [\sum [w (F_o^2 - F_c^2)^2] / \sum [w (F_o^2)^2]]^{1/2}$

Eu(1)-O(5)#1	2.3279(16)	Eu(1)-O(7)	2.4312(17)
Eu(1)-O(8)	2.3373(15)	Eu(1)-O(2)#2	2.4438(15)
Eu(1)-O(4)	2.4083(17)	Eu(1)-O(10)	2.4771(18)
Eu(1)-O(1)	2.4199(18)	Eu(1)-O(9)	2.5006(16)
O(5)-Eu(1)#3	2.3278(16)	O(1)-Eu(1)-O(2)#2	74.19(5)
O(5)#1-Eu(1)-O(4)	72.91(6)	O(5)#1-Eu(1)-O(8)	118.75(6)
O(8)-Eu(1)-O(4)	73.59(6)	O(7)-Eu(1)-O(2)#2	118.52(5)
O(5)#1-Eu(1)-O(1)	145.66(6)	O(5)#1-Eu(1)-O(10)	78.78(6)
O(8)-Eu(1)-O(1)	78.91(6)	O(8)-Eu(1)-O(10)	73.55(6)
O(4)-Eu(1)-O(1)	141.17(5)	O(4)-Eu(1)-O(10)	117.52(5)
O(5)#1-Eu(1)-O(7)	134.34(6)	O(1)-Eu(1)-O(10)	78.95(6)
O(4)-Eu(1)-O(7)	75.43(6)	O(7)-Eu(1)-O(10)	146.12(6)
O(8)-Eu(1)-O(7)	81.61(6)	O(2)#2-Eu(1)-O(10)	71.48(5)
O(1)-Eu(1)-O(7)	73.87(6)	O(5)#1-Eu(1)-O(9)	72.43(6)
O(5)#1-Eu(1)-O(2)#2	74.12(6)	O(8)-Eu(1)-O(9)	148.64(7)
O(8)-Eu(1)-O(2)#2	139.09(7)	O(4)-Eu(1)-O(9)	83.42(6)
O(4)-Eu(1)-O(2)#2	142.85(6)	O(1)-Eu(1)-O(9)	108.66(6)
O(7)-Eu(1)-O(9)	72.00(6)	O(2)#2-Eu(1)-O(9)	70.66(6)
O(10)-Eu(1)-O(9)	137.24(6)	C(37)-O(1)-Eu(1)	127.44(13)
C(37)-O(2)-Eu(1)#2	138.50(12)	C(39)-O(4)-Eu(1)	133.66(15)
C(38)-O(5)-Eu(1)#3	132.13(14)	C(40)#4-O(8)-Eu(1)	166.26(18)

Table S2 Selected bond lengths [Å] and angles $[\circ]$ for 1.

Symmetry transformations used to generate equivalent atoms:

#1 x+1, y, z #2 -x+2, -y+1, -z+2

#3 x-1, y, z #4 -x+1, -y+1, -z+1

		Quenching	Detection	
Fluorescent Materials	analyte	Constant	Limits	Ref.
		(K_{SV}, M^{-1})	(µM)	
$[Zn(2-NH_2bdc) (bibp)]_n$	$Cr_2O_7^{2-}$	6555070		13a
$[Eu_7(mtb)_5(H_2O)_{16}] \cdot NO_3 \cdot 8DMA \cdot 18$ H_2O	CrO ₄ ²⁻	3.3 × 10 ⁴	0.011	13f
$\{[Tb_4(BPDC)_4(3-OH)_4(H_2O)_8] \cdot 11H_2O\}n$	Cr ₂ O ₇ ²⁻	1.13×10 ⁴	0.1	13e
$ \{ [Tb_4Mn(BPDC)_3(3-OH)_4(HCOO)_{1.5} \\ (H_2O)_4] \cdot 2.5OH \cdot 8H_2O \} n $	$Cr_2O_7^{2-}$	5 × 10 ³	0.1	13e
$[Zn(btz)]_n$	$Cr_2O_7^{2-}$	4.23×10 ³	2	13b
	CrO ₄ ²⁻	3.19×10 ³	20	
$[Zn_2(ttz)H_2O]n$	$Cr_2O_7^{2-}$	2.19×10 ³	20	13b
	CrO ₄ ²⁻	2.35×10 ³	20	
${[Eu_2L_{1.5}(H_2O)_2EtOH] \cdot DMF}n$	$Cr_2O_7^{2-}$	1.53×10 ³	10	13g
NH ₂ –Zn-MOF	$Cr_2O_7^{2-}$	7.59×10 ³	3.9	13c
	CrO ₄ ²⁻	4.45×10 ³	4.8	
${[Cd(L)(BPDC)] \cdot 2H_2O}_n$	$Cr_2O_7^{2-}$	6.4×10 ³	37.6	13d
${[Cd(L)(SDBA)(H_2O)] \cdot 0.5H_2O}n$	$Cr_2O_7^{2-}$	4.97×10 ³	48.6	13d
$[Zn(IPA)(L)]_n$	$Cr_2O_7^{2-}$	1.37×10^{3}	12.02	13h
	CrO ₄ ²⁻	1.00×10^{3}	18.33	
$[Cd(IPA)(L)]_n$	$Cr_2O_7^{2-}$	2.91×10 ³	2.26	13h
	CrO ₄ ²⁻	1.3×10^{3}	2.52	
$[Eu(ipbp)_2(H_2O)_3] \cdot Br \cdot 6H_2O$	$Cr_2O_7^{2-}$	8.98×10^{3}	5.16	this
	CrO_4^{2-}	7.08×10^{3}	5.82	work

 Table S3 Comparison among various MOF sensors for Cr(VI) detection.

Fig. S1 IR spectra of H_2 ipbpBr and 1.

Fig. S2 The asymmetric unit of **1** showing ellipsoid at the 30% probability level. The hydrogen atoms are omitted for clarity, and some guest water molecules could not be precisely located by using single crystal X-ray crystallography due to its highly disorder.

Fig. S3 The dihedral angles of ipbp²⁻ ligand in compound **1** for (a) mode I and (b) mode II.

3340	3350	3360	3370	3380	3390	3400
			H/G			

Fig. S4 EPR signal of paled sample of compound 1.

Fig. S5 The orientations and distances of carboxylate oxygen atoms and pyridinium nitrogen atoms between adjacent ribbons of rings in compound **1**.

Fig. S6 EPR signals of 1 after heated in moisture (dark), 1-D after kept in moisture (red) and in desiccator (blue).

Fig. S7 Solid-state fluorescent emission spectrum of 1 (the inserted photograph is the sample of 1 under 365 UV light).

Fig. **S8** The quenching and recovery test of micrometer-sized **1'** (2.5 mg) dispersed in DMF/H₂O (1.72 ml/0.28 ml) in the presence of (a) $Cr_2O_7^{2-}$ and (b) CrO_4^{2-} . The violet bars represent the original fluorescence intensity and yellow bars represent the intensity in the presence of 0.33 mM analyte.

Fig. S9 Powder XRD patterns of simulated of 1, experimental of 1' and 1' after repeated for five times of sensing $Cr_2O_7^{2-}$ and CrO_4^{2-} anions.

Fig. S10 Spectral overlap between the absorption spectra of anions and the excitation spectrum of 1' in DMF/H_2O .