Supporting Information

(K_Na)NbO₃ ferroelectrics: A new class of solid-state photochromic materials with reversible luminescence switching behavior

Haiqin Sun,^a Jian Liu, ^a Xusheng Wang,^b Qiwei Zhang,^{a*} Xihong Hao,^a and Shengli An^a

a Inner Mongolia Key Laboratory of Ferroelectric-related New Energy Materials and Devices, School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, 7# Arding Street, Kun District, Baotou 014010, China b Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, 4800 Caoyang Road, Shanghai 201804, China *E-mail: zqw8000@imust.edu.cn

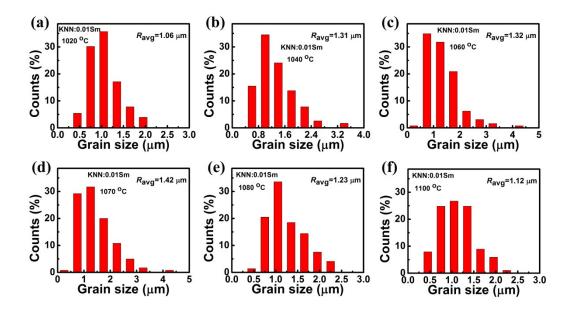


Fig. S1 Grain size distribution of KNN:0.01Sm samples sintered at different temperatures: (a)

1020 °C, (b) 1040 °C, (c) 1060 °C, (d) 1070 °C, (e) 1080 °C, and (f) 1100 °C.

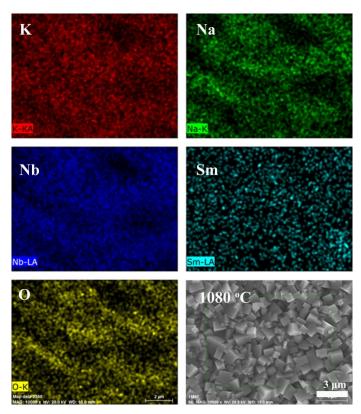


Fig. S2 Elemental mapping of K, Na, Nb, O, and Sm for KNN:0.01Sm ceramics

sintered at 1080 °C

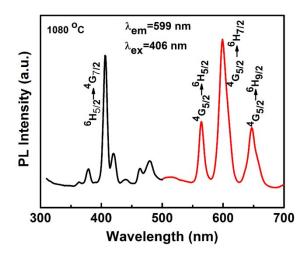


Fig. S3 Excitation (λ_{em} =599 nm) and emission spectra (λ_{ex} =406 nm) for KNN:0.01Sm ceramics

sintered at 1080 °C.

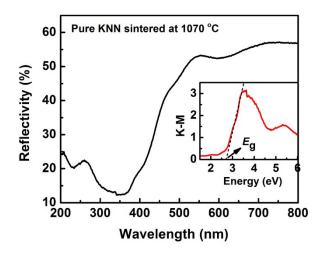


Fig. S4 Reflective spectrum of pure KNN sintered at 1070 °C for 2 h. The inset is the absorption

spectrum converted by a K-M function, the dotted line to the horizontal axis indicates

a band gap (E_g)

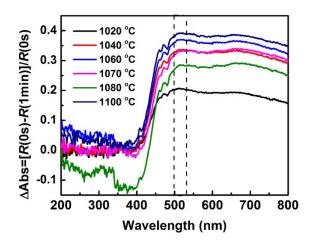


Fig. S5 The absorption changes (ΔAbs) for KNN:0.01Sm ceramics sintered at various sintering

temperatures.