Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Rigid fused π-spacer in D-π-A type molecule for dye-sensitized solar cell: A computational investigation

Ping Li, Zhixiang Wang, Chongping Song and Houyu Zhang*

State Key Laboratory of Supramolecular Structure and Materials,
Institute of Theoretical Chemistry, Jilin University, Changchun
130012, P. R. China

^{*}E-mail: houyuzhang@jlu.edu.cn

Contents

- **Fig. S1** Optimized structures of the rest of dyes and their dye-TiO₂ complexes.
- **Fig. S2** Spatial distributions of the frontier molecular orbitals for dyes **5-8**.
- **Fig. S3** Contribution of the vibrational modes to the reorganization energy for dyes **1-3**.
- **Fig. S4** Frontier molecular orbitals of dye-TiO₂ complexes for dyes **1-3**.
- Fig. S5 DOS of TiO₂ and PDOS of TiO₂ in dye-TiO₂ complexes.
- **Table S1** Calculated HOMO energy levels of dyes 1, 2 and 3 with different functionals in tetrahydrofuran (THF) solution.
- **Table S2** Calculated first singlet excitation energies ($E_{\lambda max}$) and the maximum absorption wavelengths (λ_{max}) of dyes 1, 2 and 3 with different functionals in THF solution.
- **Table S3** Selected bond lengths (Å) and adsorption energies of all investigated dye-TiO₂ complexes.

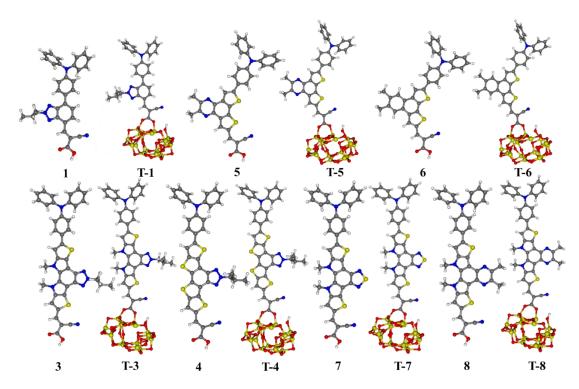


Fig. S1 Optimized structures of the rest of dyes and their dye-TiO₂ complexes.

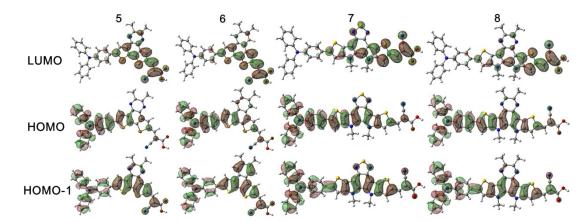
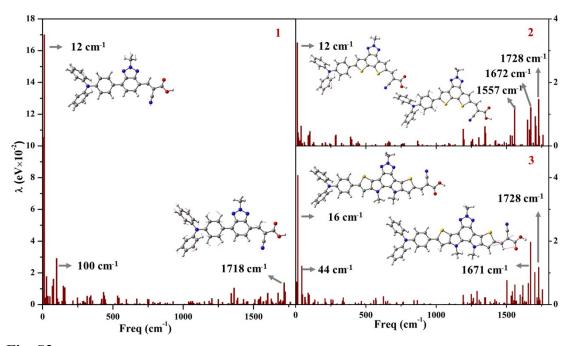
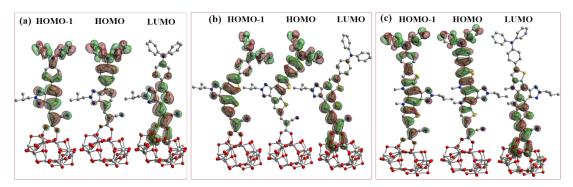




Fig. S2 Spatial distributions of the frontier molecular orbitals for dyes 5-8.

Fig. S3 Contribution of the vibrational modes to the reorganization energy for dyes 1-3, embedde with the normal modes contribute the most for Λ .

Fig. S4 Frontier molecular orbitals of dye- TiO_2 complexes for 1 (a), 2 (b), and 3 (c) (saturated H atoms are not shown).

The details in calculation of ΔE_{CB} : As indicated in Fig. S5, the comparison of the PDOS of TiO2 in 1-TiO₂ complex and the DOS of pure TiO₂ are made to determine the ΔECB . The linear fittings of DOS profiles at the low energy range for the conduction band are performed. The intercepts of fitted lines with the energy axis are considered as the CB edge, and ΔECB can be approximately evaluated by the difference of intercept at energy axis for two fitted lines.

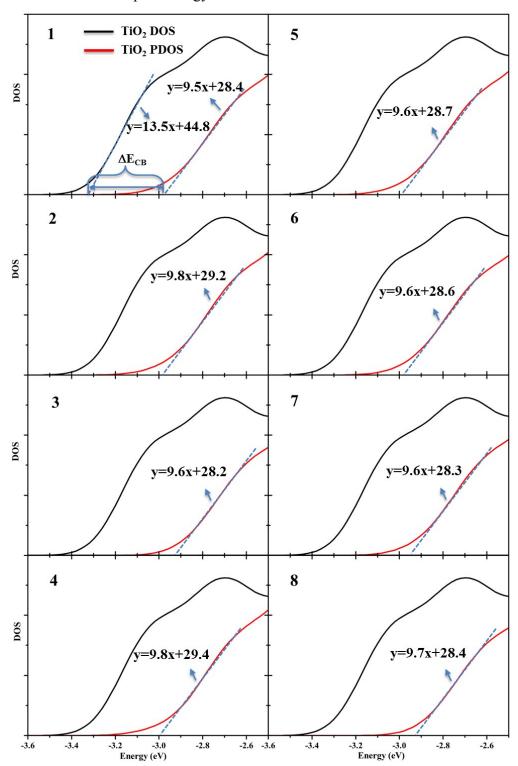


Fig. S5 DOS of TiO₂ and PDOS of TiO₂ in dye-TiO₂ complexes.

Table S1 Calculated HOMO energy levels of dyes 1, 2, and 3 in THF with functionals of PBE0, PBE0-1/3, PBE38, and mpw1k, and corresponding experimental values.

	PBE0	PBE0-1/3	PBE38	MPW1K	Expt.
	$(25\% \ HF_{exc})$	$(33.3\% \text{ HF}_{exc})$	$(37.5\% \text{ HF}_{exc})$	$(42.8\% \ HF_{exc})$	
1	-5.40	-5.70	-5.85	-6.06	-5.80
2	-5.34	-5.63	-5.78	-6.00	-5.76
3	-5.10	-5.38	-5.52	-5.73	-5.48

Table S2 Calculated first singlet excitation energies ($E_{\lambda max}$) and the maximum absorption wavelengths (λ_{max}) of dyes 1, 2, and 3 with functionals of PBE0, mpw1k, BHandHLYP, and CAM-B3LYP, and corresponding experimental values. The values denote the percentage of nonlocal Hartree-Fock exchange (HF_{exc}) in parentheses.

		PBE0	mpw1k	BHandHLYP	CAM-B3LYP	Expt.
		(25%)	(42.8%)	(50%)	(19% at SR and 65% at LR)	
1	E _{λmax} /eV	2.25	2.69	2.84	2.85	2.89
	$\lambda_{\text{max}} / nm$	552	461	437	435	430
2	$E_{\lambda max} / eV$	2.22	2.68	2.81	2.85	2.86
	$\lambda_{\text{max}} / nm$	559	462	442	435	434
3	$E_{\lambda max} / eV$	2.25	2.58	2.65	2.69	2.58
	$\lambda_{\text{max}} / nm$	552	481	468	461	480

Table S3 Selected bond lengths (Å) and adsorption energies of all investigated dye- TiO_2 complexes.

	Ti-O (H) (Å)	Ti-O (Å)	E _{ads} (kcal mol ⁻¹)
1	1.95	2.01	-31.64
_			
2	1.95	2.02	-26.09
3	1.95	2.00	-20.78
4	1.95	2.01	-21.58
5	1.95	2.02	-26.88
6	1.95	2.02	-27.12
7	1.95	2.01	-20.60
8	1.95	2.00	-21.51