Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Stable narrowband red phosphor K₃GaF₆:Mn⁴⁺ derived from hydrous

K₂GaF₅(H₂O) and K₂MnF₆

T. T. Deng, E. H. Song, Y. Y Zhou, L. Y. Wang, S. Ye, and Q. Y. Zhang¹

State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou 510641, China

Fig. S1 XRD patterns of K_3AIF_6 and K_3GaF_6 in $I4_1/a$ space group.

¹ Author to whom correspondence should be addressed; Email:<u>qyzhang@scut.edu.cn</u>

Fig. S2 Crystal structure of K_3AIF_6 in $I4_1/a$ space group: (a) the unit cell and (b) five types of distorted $[AIF_6]^{3-}$ octahedrons.

Fig. S3 The emission spectrum (a) and normalized emission spectrum (b) of time-dependent products from reaction of $K_3GaF_6:Mn^{4+}: 0, 3, 10, and 20 min, respectively.$

Fig. S4 The crystal structure of $K_2AIF_5 H_2O$ in $P2_1/m$ space group: the unit cell (a) and Al-F chain composed of cornersharing [AIF₆] octahedrons (b). XRD pattern (c) and excitation, emission spectrum (d) of $K_2AIF_5 H_2O:Mn^{4+}$.

Fig. S5 IR spectra of K₂GaF₅(H₂O) and K₃GaF₆:Mn⁴⁺.

Fig. S6 The excitation spectra and diffuse reflection spectrum of K₃GaF₆:Mn⁴⁺.

Fig. S7 Luminescence decay curves of different emission peaks in K₃GaF₆:Mn⁴⁺ (2.27 at%) upon 467 nm excitation.

Fig. S8 Excitation line of blank (BaSO₄) (*E*blank) and excitation (*E*sample) and emission (*L*emission) spectra of $K_3GaF_6:Mn^{4+}$ (2.27 at%). The quantum efficiency (QE) can be calculated as follows:

$$QE = \frac{\int Lemission}{\int Eblank - \int Esample}$$
(1)

where *L*emission and *E*sample are the emission and excitation spectra of objective samples; *E*blank is the spectrum of the excitation light without samples in integrating sphere. All of spectra were recorded by an optical integrating sphere coupled to the FLS920 fluorescence spectrophotometer at room temperature.

Fig. S9 Concentration dependent integrated intensities and decay lifetimes of $A_3GaF_6:Mn^{4+}$ (A = Na, K) with various Mn⁴⁺ contents.

Fig. S10 (a) Time-dependent normalized luminescence spectra of K_3GaF_6 :Mn⁴⁺ (2.27 at%) loaded in the 85 % humidity and 85 °C environment.

Fig. S11 Normalized temperature-dependent luminescence spectra of $K_3GaF_6:Mn^{4+}$ (2.27 at%) in the cyclic process of heating and cooling between 298 to 473 K.

Compound	Ga source	A source	Mn precursor	Molar ratio of Ga	Amount of HF solution
				atom to A atom	(49 wt.%)/mL
Na ₃ GaF ₆ :Mn ⁴⁺	Ga ₂ O ₃	NaF		5:10	10
K ₃ GaF ₆ :Mn ⁴⁺	Ga_2O_3	K ₂ CO ₃	K ₂ IVINF ₆	5:16	8

Table S1 Synthesis strategies of $A_3GaF_6:Mn^{4+}$ (A = Na, K) by co-precipitation method.

Table S2 Selected bond lengths (Å) and bond valence sum (BVS) calculations for $K_2GaF_5(H_2O)$.^a

Bond	Distance	BVS	BVS(Sum)
Ga(1)-F(1)	1.8681(19)	0.511	
Ga(1)-F(1)#A	1.8681(19)	0.511	
Ga(1)-F(2)	1.8897(18)	0.482	2.090
Ga(1)-F(2)#A	1.8897(18)	0.482	2.989
Ga(1)-F(3)	1.876(3)	0.501	
Ga(1)-O(1)	1.986(4)	0.501	
K(1)-F(1)	2.696(2)	0.123	
K(1)-F(1)#B	2.687(2)	0.152	
K(1)-F(1)#C	2.792(2)	0.114	
K(1)-F(2)#D	2.674(2)	0.157	
K(1)-F(2)	3.400(2)	0.058	
K(1)-F(2)#E	2.788(2)	0.116	1 202
K(1)-F(3)	2.7805(11)	0.111	1.262
K(1)-F(3)#A	2.7805(11)	0.111	
K(1)-F(3)#F	2.8040(12)	0.111	
K(1)-F(3) #D	2.8040(12)	0.111	
K(1)-O(1)#E	3.2454(13)	0.049	
K(1)-O(1)#C	3.2454(13)	0.049	
O(1)-Ga(1)	1.986(4)	0.501	
O(1)-K(1) #C	3.2454(13)	0.049	0.598
O(1)-K(1) #E	3.2454(13)	0.049	

^aSymmetry codes for K₂GaF₅(H₂O): (A) -x,y,-z+1/2; (B) -x+1/2,-y+1/2,-z; (C) -x+1/2,y-1/2,-z+1/2; (D) -x,-y+1,-z; (E) x-1/2,y-1/2,z; (F) x,-y+1,z+1/2.

Table S3 ICP results of K₃GaF₆:Mn⁴⁺ phosphors prepared with different mole ratios of Ga₂O₃ to K₂MnF₆.

Complex	Experimental molar ratio of	Actual doping concentration		
Samples	Ga_2O_3 to K_2MnF_6	of Mn ⁴⁺ (mol%)		
G1	100:0.5	100:0.26		
G2	100:1	100:0.38		
G3	100:3	100:2.27		
G4	100:5	100:4.48		
G5	100:7	100:6.68		
G6	100:10	100:8.44		

 Table S4 Photoelectric parameters of the three fabricated warm WLEDs.

Device	Chromaticity coordinate	CCT(K)	Ra	R9	Efficacy (Im/W)
	(x, y)	y)			,,
LED 1	(0.3822, 0.3902)	4048	83.9	34.7	102.7
LED 2	(0.3979, 0.3939)	3691	87.2	50.2	92.1
LED 3	(0.4476, 0.4253)	2994	88.4	55.0	71.0

Table S5 Photoelectric parameters of warm WLEDs denoted as LED I and LED II by using Na₃GaF₆:Mn⁴⁺ and K₃GaF₆:Mn⁴⁺ as red light component, respectively.

No.	CIE coordinates	CCT (K)	Ra	R9	Efficacy (ImW ⁻¹)	
LED I	(0.4434 0.4131)	2966	81	31	56.73	
LED II	(0.4476, 0.4253)	2994	88.4	55.0	71.0	