Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information (ESI) for Journal of Materials Chemistry C

Benefits of surfactant effects on quantum efficiency enhancement and temperature sensing behavior of NaBiF₄ upconversion nanoparticles

Pengpeng Lei,^{a,b} Ran An,^a Xuesong Zhai,^d Shuang Yao,^a Lile Dong,^{a,c} Xia Xu,^{a,b} Kaimin Du,^{a,c} Manli Zhang,^{a,c} Jing Feng,^{a,*} and Hongjie Zhang^{a,*}

 ^a State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China

^b University of Chinese Academy of Sciences, Beijing 100049, China

^c University of Science and Technology of China, Hefei 230026, China

School of Materials Engineering, Yancheng Institute of Technology, Yancheng 224051, China

* Corresponding authors. Tel.:+86 431 85262127; fax: +86 431 85698041. *E-mail addresses:* fengj@ciac.ac.cn (J. Feng), hongjie@ciac.ac.cn (H. Zhang).

KEYWORDS: NaBiF₄, upconversion luminescence, polyacrylic acid, quantum efficiency, temperature sensing

Fig. S1 X-ray Energy-dispersive (EDX) spectroscopy of NaBiF₄:Yb³⁺/Er³⁺ UCNPs.

Fig. S2 X-ray photoelectron spectroscopy (XPS) survey spectra of NaBiF₄:Yb³⁺/Er³⁺ UCNPs. (a) survey, (b) Yb 4d, and (c) Er 4d.

Fig. S3 XRD pattern of PAA-modified NaBiF₄:Yb³⁺/Er³⁺ UCNPs.

Fig. S4 FT-IR spectra of $NaBiF_4:Yb^{3+}/Er^{3+}$ and PAA-modified $NaBiF_4:Yb^{3+}/Er^{3+}$ UCNPs.

Fig. S5 Thermo-gravimetric (TG) analysis of PAA-modifeid NaBiF₄:Yb³⁺/Er³⁺ UCNPs.

Fig. S6 XRD pattern of NaYF₄:Yb³⁺/Er³⁺ UCNPs.

Fig. S7 SEM image of NaYF₄:Yb³⁺/Er³⁺ UCNPs.

Fig. S8 XRD pattern (a) and SEM image (b) of PAA-modified NaYF₄:Yb³⁺/Er³⁺ UCNPs. UCL spectra of (c) PAA-modified NaBiF₄:Yb³⁺/Er³⁺ and PAA-modified NaYF₄:Yb³⁺/Er³⁺ and (d) PAA-modified NaBiF₄:Yb³⁺/Tm³⁺ and PAA-modified NaYF₄:Yb³⁺/Tm³ under 980 nm NIR excitation (11.3 W/cm²).

Fig. S9 (a) Temperature dependent UCL spectra of NaBiF₄:Yb³⁺/Er³⁺ UCNPs at various temperatures under 980 nm excitation (21.2 W/cm²). (b) The green UCL spectra of Er³⁺ from ${}^{2}H_{11/2}$ and ${}^{4}S_{3/2}$ levels to the ${}^{4}I_{15/2}$ level at different temperature. (c) The integrated luminescence intensity plots of Er³⁺ at 521 (${}^{2}H_{11/2} - {}^{4}I_{15/2}$) and 540 nm (${}^{4}S_{3/2} - {}^{4}I_{15/2}$). (d) Monolog plot of R (I_{521}/I_{540}) as a function of inverse absolute temperature. (e) R (I_{521}/I_{540}) relative to the absolute temperature. (f) The sensing sensitivity as a function of the absolute temperature.