Supplementary Data

In-situ reversibly tuning photoluminescence of epitaxial thin film via piezoelectric strain induced by Pb(Mg_{1/3}Nb_{2/3})O₃-PbTiO₃ single crystal

Feifei Wang¹, Dan Liu¹, Zibin Chen², Zhihua Duan¹, Yi Zhang¹, Dazhi Sun¹,

Xiangyong Zhao^{1, a)}, Wangzhou Shi^{1, b)}, Renkui Zheng³, and Haosu Luo⁴

¹Key Laboratory of Optoelectronic Material and Device, Department of Physics, Shanghai Normal University, Shanghai, 200234, China

²School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia

³State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

⁴Key Laboratory of Inorganic Functional Material and Device, Shanghai Institute of Ceramics, 215 Chengbei Road, Jiading, Shanghai 201800, China

Fig. S1 shows the schematic PFM set-up and the local PFM hysteresis loops measured under 25 V dc bias field and an ac voltage of 1 V was applied. The phase angle exhibited a 180°change under the reversal of the dc bias field, confirming a polarization switching process.

Fig. S2 shows the macroscopic P-E loops of the BTO(Yb/Er) thin film, it can

been found that the maximum polarization $P_{\rm m}$, remnant polarization $P_{\rm r}$, and coercive field $E_{\rm c}$ is ~30 μ C/cm², ~10 μ C /cm² and 3 kV/mm, respectively. The well-defined hysteresis loops verified the macroscopic ferroelectric response of the epitaxial BTO(Yb/Er) thin film.

Fig. S3 shows the cross-sectional HRTEM image of the SRO/BTO(Yb/Er) interface, which indicated the BTO(Yb/Er) thin film was epitaxially grown on the SRO bottom electrode.

Fig. S4 shows the PL spectra measured under 0.3 kV/mm during the increasing and decreasing process. It can be found that in the repeated process the intensity of the green emission peak was reversibly changed.

Fig. S1. The PFM set-up and local piezoelectric hysteresis loop of the BTO(Yb/Er)

thin film.

Fig. S2. The macroscopic P-E loops of the BTO(Yb/Er) thin film measured under 1

kHz at room temperature.

Fig. S3. The cross-sectional HRTEM image of the SRO/BTO(Yb/Er) interface.

Fig. S4. The PL spectra measured under 0.3 kV/mm during the increasing and

decreasing process