Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Directly coupled dual emitting core based molecular design of thermally activated delayed fluorescent emitters

Hee-Jun Park, Si Hyun Han, Jun Yeob Lee*

H.-J. Park, S. H. Han, Prof. J. Y. Lee School of Chemical Engineering, Sungkyunkwan University 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 440-746, Korea *E-mail: leej17@skku.edu

Keywords: thermally activated delayed fluorescence dopant engineering quantum efficiency electroluminescence

Table of Contents

Cyclic voltammograms of two emitters	3
Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) curves	4
Energy level diagram and chemical structure of materials	5
Power and current efficiencies for two emitters	6
PL decay curves of mCBPTrz-1 and mCBPTrz-2 measured at various temperatures	7
The PL emission spectra at prompt and delayed time	8
¹ H and ¹³ C NMR spectra	9
High resolution mass spectrometry (HRMS) data of two emitters	19
Elemental analysis data of mCBPTrz-1 and mCBPTrz-2	20
Equations for the calculation of rate constants	21

Figure S1. Cyclic voltammograms of mCBPTrz-1 and mCBPTrz-2.

Figure S2. TGA and DSC curves of mCBPTrz-1 and mCBPTrz-2.

Figure S3. Energy level diagram and chemical structure of materials.

Figure S4. Power and current efficiencies (a), (b) for mCBPTrz-1 and (c), (d) for mCBPTrz-2.

Figure S5. PL decay curves of mCBPTrz-1 and mCBPTrz-2 measured at various temperatures.

Figure S6. The PL emission spectra at prompt and delayed time.

(left: mCBPTrz-1, right: mCBPTrz-2)

Figure S7. ¹H and ¹³C NMR spectra of A1.

Figure S8. ¹H and ¹³C NMR spectra of A2.

Figure S9. ¹H and ¹³C NMR spectra of A3.

Figure S12. ¹H and ¹³C NMR spectra of B2.

Figure S13. ¹H and ¹³C NMR spectra of B3.

Figure S14. ¹H NMR spectrum of B4.

Figure S15. ¹H NMR spectrum of mCBPTrz-1.

Figure S16. ¹H NMR spectrum of mCBPTrz-2.

Figure S17. High resolution mass spectrometry (HRMS) data of mCBPTrz-1 and mCBPTrz-2.

서올대학교 기초과학공둥기기원 SEOUL NATIONAL UNIVERSITY NATIONAL CENTER FOR INTER-UNIVERSITY FACILITIES Eager 300 S/W Validation 본 공동기기원의 분석결과는 광고, 선전, 홍보 및 법적 수단으로 이용될 수 없습니다.					
Operator ID: SNU-EA2000 Company name: Thermo Fisher					
				(Unit: wt%)	
Sample name	Nitrogen	Carbon	Hydrogen		
mCBP-Trz1	11.8677	83.7546	4.3393		
mCBP-Trz2	9.5487	84.0477	6.2947		

Figure S18. Elemental analysis data of mCBPTrz-1 and mCBPTrz-2.

$$\tau_{\rm p} = 1/k_{\rm p}$$

$$\tau_{\rm d} = 1/k_{\rm d}$$

$$k_{\rm ISC} = (1-\Phi_{\rm F}) \times k_{\rm p}$$

$$k_{\rm RISC} = (k_{\rm p}k_{\rm d}/k_{\rm ISC}) \times (\Phi_{\rm TADF}/\Phi_{\rm F})$$

$$k_{\rm r}^{\rm S} = k_{\rm p}\Phi_{\rm F}$$

$$k_{\rm nr}^{\rm T} = k_{\rm d} - k_{\rm RISC}\Phi_{\rm F}$$

Equations for the calculation of rate constants