Electronic Supplementary Information

A new hybrid material of polyoxovanadate-Cu complex with $\mathrm{V} \cdots \mathrm{H}$ interactions and dual aqueous phase sensing properties for picric acid as well as $\mathbf{P d}^{2+}$: X-ray, magnetic and theoretical studies, and mechanistic insights of sensing \dagger

Mukul Raizada ${ }^{\text {a* }}$, Farasha Sama ${ }^{\text {a }}$, Mo Ashafaq ${ }^{\text {a }}$, M. Shahid ${ }^{\text {a* }}$, Musheer Ahmad ${ }^{\text {b }}$, Zafar A. Siddiqi ${ }^{\text {a* }}$
${ }^{a}$ Department of Chemistry, Aligarh Muslim University, Aligarh-202002, India
${ }^{b}$ Department of Applied Chemistry, Aligarh Muslim University, Aligarh-202002, India

* Corresponding authors, E-mail: zafarasiddiqi@gmail.com, shahid81chem@gmail.com, mukulraizada1@gmail.com

Formula for calculating the percentage of Picric acid fluorescence intensity quenching:

$$
(I o-I) / I 0 \times 100 \%
$$

Where, $I o=$ initial fluorescence intensity,

$$
I=\text { intensity of } \mathbf{1} \text { containing PA solution. }
$$

Reference: (a) S. Pramanik, C. Zheng, X. Zhang, T. J. Emge and J. Li, J. Am. Chem. Soc., 2011, 133,4153; (b) D. Banerjee, Z. Hu and J. Li, Dalton Trans., 2014, 43, 10668.

Stern-Volmer equation:

$$
I_{0} / I=K S V[A]+1
$$

Where, $I_{0}=$ fluorescent intensity of $\mathbf{1}$ before the addition of the analyte
$I=$ fluorescent intensity after the addition of the respective analyte

$$
K_{\mathrm{sV}}=\text { Stern-Volmer constant }
$$

$$
[\mathrm{A}]=\text { molar concentration of the analyte }\left(\mathrm{M}^{-1}\right) .
$$

Table S1. Bond valence sum calculation of Vanadium (V) oxidation state in the crystal structure of $\mathbf{1}$ [a]

Atom	V^{V}	V^{IV}	$\mathrm{V}^{\mathrm{III}}$
V0	$\underline{\mathbf{4 . 9 8 5}}$	4.735	4.239
V1	$\underline{\mathbf{4 . 9 4 8}}$	4.701	4.208
V2	$\underline{\mathbf{5 . 0 4 1}}$	4.789	4.287
V3	$\underline{\mathbf{4 . 9 2 0}}$	4.674	4.184
V4	$\underline{\mathbf{4 . 9 6 4}}$	4.716	4.221
V6	$\underline{\mathbf{4 . 9 5 5}}$	4.706	4.239
V7	$\underline{\mathbf{4 . 9 9 1}}$	4.741	4.244
V8	$\underline{\mathbf{4 . 9 4 8}}$	4.701	4.208
V9	4.776	4.228	
V10	$\underline{\mathbf{5 2 3}}$		

[a] The Values in bold italicised underlined are the closest to the charge for which it was calculated; the nearest whole number can be taken as the oxidation state of that atom.

Table S2. Distances and angles of non-covalent interaction in 1.

D-H $\cdots \mathrm{A}$	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \cdots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \cdots \mathrm{A})$	L(DHA)
C13-H13 $\cdots \mathrm{V} 0 \mathrm{AA}$	0.930	3.086	3.861	141.87
C18-H18 $\cdots \mathrm{V} 4$	0.930	3.147	3.955	146.30
C4-H4A $\cdots \mathrm{V} 9$	0.969	3.161	4.028	149.63
C11-H11A $\cdots \mathrm{V} 3$	0.970	3.180	4.043	149.04
N5-C9 $\cdots \mathrm{O} 11$	1.513	3.193	4.033	113.02
C23-H23 $\cdots \mathrm{O} 18$	0.930	2.377	3.177	143.98
C24-H24 $\cdots \mathrm{O} 28$	0.930	2.465	3.272	145.12
C28-C29 $\cdots \mathrm{C} 22$	1.386	3.262	3.508	88.40
C9-H9A $\cdots \mathrm{O} 11$	0.971	2.654	3.193	115.46
C18-H18 $\cdots \mathrm{O} 16$	0.930	2.171	3.092	170.72
C23-H23 $\cdots \mathrm{O} 18$	0.930	2.377	3.177	143.98
C5-H5B $\cdots \mathrm{O} 3$	0.970	2.610	3.213	120.55

Fig. S1: (a) Hirshfeld surface of 1 mapped with $d_{\text {norm }}(a), d_{i}(b), d_{e}(c)$, shape index (d) and curvedness (e) for decavanadate unit.

Fig. S2: (a) Hirshfeld surface of 1 mapped with $d_{\text {norm }}(a), d_{i}(b), d_{e}(c)$, shape index (d) and curvedness (e) for copper unit.

Fig. S3: 2D Fingerprint plots for various interactions present in the $\mathrm{V}_{10} \mathrm{O}_{28}-\mathrm{Cu}$-pyno-NEt unit.

Fig. S4: Front and back views of the electrostatic potential (ESP) mapped over the Hirshfeld surface for $\mathrm{V}_{10} \mathrm{O}_{28}-\mathrm{Cu}$-pyno-NEt over the range -0.136 au (red) through 0.000 (white) to +1.185 au (blue).

Figure S5: Emission spectrum of $\mathbf{1}$ dispersed in different solvents upon excitation at 304 nm .

Fig. S6: The change in fluorescence intensity of $\mathbf{1}$ upon incremental addition of NB solution in Water.

Fig. S7: The change in fluorescence intensity of $\mathbf{1}$ upon incremental addition of MNP solution in Water.

Fig. S8: The change in fluorescence intensity of $\mathbf{1}$ upon incremental addition of PNP solution in Water.

Fig. S9: The change in fluorescence intensity of $\mathbf{1}$ upon incremental addition of 2,4-DNP solution in Water.

Fig. S10: The change in fluorescence intensity of $\mathbf{1}$ upon incremental addition of PA solution in Water.

Fig. S11: (a) Solid and solution (water) state UV-Visible spectra of 1. (b) UV-Visible spectra at different temperature.

Stern-Volmer plot of 1 various nitro analytes in water

Fig. S12: 3D representation of Stern-Volmer (SV) plots of $\mathbf{1}$ for various NACs.

Fig. S13: Fluorescence decay profile of $\mathbf{1}$ in the presence and absence of PA and Pd^{2+} solution.

Fig. S14: UV-vis spectra of $\mathbf{1}$ upon gradual addition of PA showing spectral change with the appearance of new band at 356 nm .

Fig. S15: UV-vis spectra of $\mathbf{1}$ upon gradual addition of 2,4-DNP showing spectral change with the appearance of new band at 366 nm .

Fig. S16: UV-vis spectra of $\mathbf{1}$ in the presence of different nitro analytes.

Fig. S17: The change in fluorescence intensity of $\mathbf{1}$ upon incremental addition of Catechol (a), 2,6 Bis(hydroxymethyl) p-cresol (b), di(trimethylolpropane) (c) and 1,1,1Tris(hydroxymethyl)propane (d) (1mM) solution in Water.

Fig. S18: The change in fluorescence intensity of $\mathbf{1}$ upon addition of NB followed by PA.

Fig. S19: The change in fluorescence intensity of $\mathbf{1}$ upon addition of MNP followed by PA.

Fig. S20: The change in fluorescence intensity of $\mathbf{1}$ upon addition of PNP followed by PA.

Fig. S21: The change in fluorescence intensity of $\mathbf{1}$ upon addition of 2,4-DNP followed by PA.

Table S3: - HOMO and LUMO energies calculated for nitroanalytes and ligand at B3LYP/6-31G* level of theory.

Analytes	HOMO (ev)	LUMO (eV)	Band gap (eV)
NB	-7.752	-3.023	4.729
PNP	-7.236	-2.722	4.514
MNP	-7.029	-2.984	4.045
$2,4-$ DNP	-6.408	-3.014	3.394
PA	-8.205	-4.384	3.821

Fig. S22: The quenching and recyclability test of 1 , the upper dots represent the initial luminescence intensity and the lower dots represent the intensity upon addition of 4.58 ppb of PA solution.

Fig. S23: PXRD patterns of 1: as-synthesized (blue) and after immersion in Pd_{2+} solution for 12 hrs (orange).

Fig. S24: 3D representation of Stern-Volmer (SV) plots of $\mathbf{1}$ for various light metal ions.

(a) ${ }^{4}$

Fig. S25: (a) Stern-Volmer plot for various heavy analytes. (b) 3D representation of SternVolmer (SV) plots of $\mathbf{1}$ for various heavy metal ions.

Fig. S26: Emission spectrum of $\mathbf{1}$ upon incremental addition of $\mathrm{Co}^{2+}(1 \mathrm{mM})$ solution in Water.

Fig. S27: Emission spectrum of $\mathbf{1}$ upon incremental addition of $\mathrm{Ni}^{2+}(1 \mathrm{mM})$ solution in Water.

Fig. S28: Emission spectrum of $\mathbf{1}$ upon incremental addition of $\mathrm{Cu}^{2+}(1 \mathrm{mM})$ solution in Water.

Fig. S29: Emission spectrum of $\mathbf{1}$ upon incremental addition of $\mathrm{Mn}^{2+}(1 \mathrm{mM})$ solution in Water.

Fig. S30: Emission spectrum of $\mathbf{1}$ upon incremental addition of $\mathrm{Cd}^{2+}(1 \mathrm{mM})$ solution in Water.

Fig. S31: Emission spectrum of $\mathbf{1}$ upon incremental addition of $\mathrm{Hg}^{2+}(1 \mathrm{mM})$ solution in Water.

Fig. S32: Emission spectrum of $\mathbf{1}$ upon incremental addition of $\mathrm{Pb}^{2+}(1 \mathrm{mM})$ solution in Water.

Fig. S33: Emission spectrum of $\mathbf{1}$ upon incremental addition of $\mathrm{Pt}^{2+}(1 \mathrm{mM})$ solution in Water.

Quenching Efficiency \%

Fig. S34: The fluorescence quenching efficiencies of different analytes upon addition of 11 ppb.

Fig. S35: The change in fluorescence intensity of $\mathbf{1}$ upon addition of $\mathrm{Co}^{2+}(a), \mathrm{Ni}^{2+}(b), \mathrm{Cu}^{2+}(\mathrm{c})$ and $\mathrm{Mn}^{2+}(\mathrm{d})$ solution followed by Pb^{2+} solution respectively.

Fig. S36: The change in fluorescence intensity of $\mathbf{1}$ upon addition of $\mathrm{Cd}^{2+}(a), \mathrm{Hg}^{2+}(b), \mathrm{Pb}^{2+}(\mathrm{c})$ and $\mathrm{Pt}^{2+}(\mathrm{d})$ solution followed by Pb^{2+} solution respectively.

Fig. S37: Linear region of fluorescence intensity of $\mathbf{1}$ in water upon addition of PA ($0.5-3 \mu \mathrm{~L}, 2 \mathrm{mM}$ stock solution) in water.

Fig. S38: Linear region of fluorescence intensity of $\mathbf{1}$ in water upon addition of Pd^{2+} ($20-100 \mu \mathrm{~L}, 1 \mathrm{mM}$ stock solution) in water.

Table S4. Selected bond lengths and angles for $\mathbf{1}$.

Bond Length (1)			
O0AA-V6	1.766(6)	O15-V2	1.930(6)
O0AA-V10	1.923(6)	O15-V3	1.946(6)
O2-V6	1.949(6)	O15-V0AA	2.016(6)
O2-V8	2.026(6)	O16-V2	$1.762(6)$
O3-V9	$1.919(6)$	O16-V4	1.908(6)
O3-V7	1.925(6)	O17-V7	1.608(7)
O3-V6	2.072(6)	O18-V8	1.770(6)
O4-V9	2.112(6)	O18-V7	1.910(6)
O4-V6	2.268(6)	O19-V10	$1.602(6)$
O4-V7	2.283(6)	O20-V6	1.600(7)
O4-V8	$2.309(6)$	O21-V6	1.934(6)
O4-V10	$2.314(5)$	O21-V9	1.957(6)
O5-V9	1.681(6)	O21-V7	2.022 (6)
O5-V10	2.074(6)	O22-V1	1.612(7)
O6-V9	1.702(6)	O23-V2	1.597(7)
O6-V8	2.022(6)	O24-V0AA	1.601(6)
O7-V7	1.816(6)	O25-V1	1.783(7)
O7-V10	1.873(7)	O25-V0AA	1.916(6)
O8-V10	1.795(6)	O26-V0AA	1.832(6)
O8-V8	1.853(6)	O26-V4	1.887(6)
O9-V3	$1.706(6)$	O27-V4	1.619(6)
O9-V1	2.018(6)	O28-V8	1.613(6)
O10-V2	1.959(6)	O34-Cu1	1.921(9)
O10-V1	2.026(6)	O35-Cu1	1.898(9)
O11-V0AA	1.931(6)	O37-Cu2	1.947(10)
O11-V3	1.933(6)	O38-Cu2	1.927(9)
O11-V2	2.058(6)	N1-O34	1.291(12)
O12-V3	2.117(6)	N2-035	1.314(12)
$\mathrm{O} 12-\mathrm{V} 2$	2.261(6)	N3-O37	1.289(12)
O12-V0AA	2.297(6)	C32-N4	$1.352(16)$
O12-V1	$2.301(6)$	C27-N3	$1.307(16)$
O12-V4	2.315 (5)	C28-N4	$1.363(15)$
O13-V3	1.680(6)	C24-N3	1.392(16)
O13-V4	2.075(6)	C1-N6	1.521(13)
O14-V4	1.791(6)	C5-N6	1.490 (14)
O14-V1	1.863(6)	C17-N1	$1.333(15)$
Bond angles (1)			
V6-O0AA -V10	114.8(3)	V3-O11-V2	108.9(3)
V6-02-V8	112.2(3)	V3-O12-V3	100.9(2)
V9-03-V7	108.3(3)	V2-O12-V0AA	170.6(3)
V9-03-V6	108.2(3)	V3-O12-V1	170.7(3)
V7-03-V6	98.0(3)	V2-O12-V1	92.8(2)
V9-04-V6	91.0(2)	V3-O12-V4	170.5(3)
V9-O4-V7	90.3(2)	V2-O12-V4	85.42(19)
V6-O4-V7	170.5(3)	V3-O13-V4	110.6(3)
V9-04-V8	170.9(3)	V3-O14-V1	114.1(3)
V6-04-V8	92.3(2)	V2-O15-V3	107.1(3)
V7-04-V8	85.17(19)	V2-O16-V4	115.5(3)
V9-O4-V8	88.6(2)	N1-O34-Cu1	121.2(7)
V9-O5-V10	110.6(3)	N4-O38-Cu2	121.4(8)
V9-O6-V8	110.0(3)	O35-Cu1-O34	90.1(4)
V7-O7-V10	115.0(3)	O38-Cu2-O37	90.3(4)
V10-O8-V8	114.5(3)	N3-O37-Cu2	119.8(7)
V3-O9-V1	110.1(3)	N4-O38-Cu2	121.4(8)
V2-O10-V1	112.0(3)	O34-Cu1-O34	180.000(2)
V0AA-O11-V3	108.0(3)	$\mathrm{O} 38-\mathrm{Cu} 2-\mathrm{O} 38$	180.0(7)

Calculation of standard deviation:

Table S5: Standard deviation for 1.

Blank Readings (only probe)	FL Intensity of 1
Reading 1	111.03
Reading 2	110.26
Reading 3	109.04
Reading 4	107.50
Reading 5	114.49
Standard Deviation (σ)	$\mathbf{2 . 3 4}$

Calculation of Detection Limit:

Table S6: Detection limit calculation of $\mathbf{1}$ for PA

Complex	Slope from Graph (m)	Detection limit $(3 \sigma / m)$	
		$\mu \mathrm{M}$	ppb
$\mathbf{1}$	8649.43	$8.12 \mathrm{E}-04$	~ 0.18

Table S7: Detection limit calculation of $\mathbf{1}$ for Pd^{2+}

Complex	Slope from Graph (m)	Detection limit $(3 \sigma / m)$	
		$\mu \mathrm{M}$	ppb
$\mathbf{1}$	891.42	$7.88 \mathrm{E}-03$	~ 0.80

