Electronic Supporting Information

Phosphorescent Mechanochromism through the Contraction of Ag₁₂Cu₂ Clusters in Tetradecanuclear Copper-Silver Acetylide Complexes

Xu Zhang,^a Jin-Yun Wang,^a Di Qiao^{a,b} and Zhong-Ning Chen^{*a,b}

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. E-mail: czn@fjirsm.ac.cn

^b College of Chemistry and Materials, Fuzhou Normal University, Fuzhou, Fujian 350007, China

able S1. Crystallographic data of the Ag ₁₂ Cu ₂ complex 1.

_

_

empirical formula	C ₂₂₂ H ₂₂₉ Ag ₁₂ Cl ₂ Cu ₂ O ₈ P ₈
formula weight	4765.23
crystal system	monoclinic
space group	P21/c
<i>a</i> (Å)	20.126(4)
b (Å)	48.515(8)
<i>c</i> (Å)	25.912(5)
β (deg)	103.847(3)
$V(\dot{A}^3)$	24566(8)
Z	4
$ ho_{calcd}$ (g/cm ⁻³)	1.288
μ (mm ⁻¹)	1.222
radiation (λ, \hat{A})	0.71073
temperature (K)	293(2)
completeness	99.8
GOF	1.125
R1 $(F_{o})^{a}$	0.0676
wR2 $(F_o^2)^b$	0.2164

 ${}^{a}\mathsf{R}1=\Sigma|F_{o}-F_{c}|\Sigma F_{o}, {}^{b}w\mathsf{R}2=\Sigma[w(F_{o}^{2}-F_{c}^{2})^{2}]/\Sigma[w(F_{o})^{2})]^{1/2}$

Table S2. The UV-Vis Absorption Spectral Data of $Ag_{12}Cu_2$ Complexes 1–3 in CH_2Cl_2 at Ambient Temperature.

	$\lambda_{abs}/nm (a/dm^3 mol^{-1} cm^{-1})$
1	238 (206937), 253 (163985), 273 (160864), 414 (8731)
2	240 (176105), 247 (179579), 273 (161186), 422 (8278)
3	238 (155491), 249 (129765), 270 (65457), 445 (7963)

Table S3. Partial Molecular Orbital Compositions	(%)(%) in the Singlet Excited	State for Ag ₁₂ Cu ₂ Cluster	Complex 2' in Dichlorome	thane by TD-DFT Method at
the B3LYP Level.				

orbital	energy (eV)	MO contribution (%)			
		Cu (s/p/d) Ag (s/p/d)		$C = CC_6H_5$	P(CH ₂ PH ₂) ₃
LUMO+10	-1.47	9.84 (0/98/2)	31.16 (47/51/2)	55.57	3.43
LUMO+8	-1.63	28.96 (0/99/1)	40.38 (35/64/1)	27.11	3.54
LUMO+5	-1.75	12.44 (1/98/1)	37.43 (79/19/2)	46.23	3.90
LUMO+4	-1.80	22.59 (0/98/2)	42.89 (70/28/2)	31.75	2.77
LUMO+3	-1.82	21.61 (0/98/2)	45.24 (72/27/1)	30.27	2.88
LUMO+2	-1.97	37.63 (0/99/1)	39.94 (27/72/1)	22.03	0.41
LUMO+1	-1.98	37.38 (0/99/1)	40.85 (24/74/1)	21.41	0.36
LUMO	-2.59	32.88 (50/42/8)	36.18 (82/12/6)	26.08	4.85
НОМО	-6.17	18.67 (12/6/82)	14.06 (6/13/81)	42.15	25.11
HOMO-1	-6.22	13.38 (1/58/40)	32.24 (12/37/52)	48.66	5.72
HOMO-2	-6.24	14.67 (0/61/39)	32.90 (11/38/51)	46.94	5.49
HOMO-3	-6.26	9.93 (5/20/75)	22.92 (23/14/63)	50.73	16.43
HOMO-4	-6.32	10.01 (5/23/72)	27.97 (21/19/60)	53.88	8.14
HOMO-5	-6.34	15.75 (17/32/50)	29.84 (8/56/36)	43.68	10.73
HOMO-7	-6.44	14.08 (18/4/78)	21.87 (35/8/57)	49.80	14.26
HOMO-10	-6.64	14.91 (0/11/89)	26.20 (39/12/49)	56.93	1.97
HOMO-13	-6.77	24.39 (0/18/82)	37.34 (32/11/58)	37.24	1.03

Table S4. The Absorption Transitions for $Ag_{12}Cu_2$ Complex 2' in Dichloromethane by TD-DFT Method at the B3LYP Level.

States	<i>E</i> , nm (eV)	O.S.	Transition (Contrib.)	sition (Contrib.) Assignment	
S ₁	402 (3.09)	0.0209	HOMO→LUMO (93%)	¹ MC/ ¹ LMCT/ ¹ IL	422
S ₁₃	351 (3.54)	0.0539	HOMO-10→LUMO (45%) HOMO-13→LUMO (40%)	¹ MC/ ¹ LMCT/ ¹ IL ¹ MC/ ¹ IL/ ¹ LMCT	
S ₂₂	328 (3.79)	0.0711	HOMO-3→LUMO+1 (45%) HOMO-2→LUMO+1 (11%)	¹ LMCT/ ¹ MC/ ¹ IL ¹ MC/ ¹ LMCT/ ¹ IL	
S ₂₅	323 (3.83)	0.0742	HOMO→LUMO+3 (44%) HOMO-3→LUMO+2 (9%)	¹ LMCT/ ¹ MC/ ¹ IL ¹ LMCT/ ¹ MC/ ¹ IL	
S ₂₇	322 (3.85)	0.1009	HOMO→LUMO+4 (33%) HOMO-4→LUMO+1 (12%)	¹ MC/ ¹ IL/ ¹ LMCT ¹ LMCT/ ¹ MC/ ¹ IL	
S ₃₂	318 (3.90)	0.1425	HOMO-3→LUMO+3 (15%) HOMO-5→LUMO+2 (11%) HOMO-4→LUMO+3 (9%)	¹ LMCT/ ¹ MC/ ¹ IL ¹ MC/ ¹ LMCT/ ¹ IL ¹ MC/ ¹ IL/ ¹ LMCT	
S ₄₂	310 (4.00)	0.1025	HOMO-7→LUMO+2 (19%) HOMO-7→LUMO+1 (12%) HOMO-4→LUMO+4 (10%)	¹ LMCT/ ¹ MC/ ¹ IL ¹ LMCT/ ¹ MC/ ¹ IL ¹ MC/ ¹ IL/ ¹ LMCT	
S ₁₂₀	284 (4.37)	0.1354	HOMO-1→LUMO+10 (14%) HOMO→LUMO+10 (9%) HOMO-7→LUMO+8 (8%)	¹ IL/ ¹ MC ¹ IL/ ¹ MC/ ¹ LLCT/ ¹ LMCT ¹ MC/ ¹ LMCT/ ¹ IL	273

Table S5. Partial Molecular Orbital Compositions (%) in the Lowest Triplet Excited State and the Emission Transitions for Ag ₁₂ Cu ₂ Complex 2' in Dichlorome	ethane
by TD-DFT Method at the B3LYP Level.	

orbital	energy (eV)		MO contribution (%)				
		Cu (s/p/	d)	Ag (s/p/d)		C≡CC ₆ H ₅	P(CH ₂ PH ₂) ₃
LUMO	-3.33	32.03 (3	3/52/15)	40.44 (74/14/1	12)	22.89	4.65
НОМО	-6.17	12.20 (0	/76/24)	33.97 (10/42/4	18)	49.2	4.62
HOMO-1	-6.19	7.72 (2/8	35/14)	31.71 (8/41/51	1)	52.46	8.1
HOMO-6	-6.45	21.05 (2	7/17/57)	16.37 (8/61/31	1)	36.88	25.7
state	<i>E</i> , nm (eV)	O.S.	transition (contrib	.)	assignment		exp. (nm)
T ₁	562 (2.21)	0.0000	Homo-6→Lumo Homo-1→Lumo Homo→Lumo (9 (42%) 9 (23%) 18%)	³ MC/ ³ LMCT/ ³ IL ³ MC/ ³ LMCT/ ³ IL ³ MC/ ³ LMCT/ ³ IL		566

Figure S1. The high resolution mass spectrometry of $Ag_{12}Cu_2$ cluster complex 1.

Figure S2. The high resolution mass spectrometry of Ag₁₂Cu₂ cluster complex 2.

Figure S3. The high resolution mass spectrometry of $Ag_{12}Cu_2$ cluster complex 3.

Figure S4. The ¹H NMR spectrum of Ag₁₂Cu₂ cluster complex 1 in CD₂Cl₂ solution at ambient temperature.

Figure S5. The ${}^{31}P{}^{1}H{}$ NMR spectrum of Ag₁₂Cu₂ cluster complex 1 in CD₂Cl₂ solution at ambient temperature.

Figure S6. The ${}^{1}H$ NMR spectrum of Ag₁₂Cu₂ cluster complex 2 in CD₂Cl₂ solution at ambient temperature.

 $\label{eq:Figure S7} \textbf{Figure S7}. \ The \ ^{31}P\{^1H\} \ NMR \ spectrum \ of \ Ag_{12}Cu_2 \ cluster \ complex \ \textbf{2} \ in \ CD_2Cl_2 \ solution \ at \ ambient \ temperature.$

Figure S8. The 1 H NMR spectrum of Ag₁₂Cu₂ cluster complex 3 in CD₂Cl₂ solution at ambient temperature.

Figure S9. The ${}^{31}P{}^{1}H$ NMR spectrum of Ag₁₂Cu₂ cluster complex 3 in CD₂Cl₂ solution at ambient temperature.

Figure S10. A view of $Ag_{12}Cu_2$ cluster structure in complex 1 with atom labeling scheme. Phenyl groups on P atoms and 4-tert-butylbenzeneacetylides are omitted for clarity.

Figure S11. The solid-state UV-Vis spectra of Ag₁₂Cu₂ cluster complex 1 before and after mechanical grinding.

Figure S12. Phosphorescent emission spectral changes of the ground species for $Ag_{12}Cu_2$ cluster complex 1 upon exposure to CH_2Cl_2 vapour, showing the gradual restoration to the original state.