Electronic Supporting Information (ESI)

Reversibly Thermochromic Bismuth–Organic Materials with Tunable Optical Gaps

Guoxian Zhang,[†] Julian. M. W. Chan*[†]

[†]Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt. Ottawa, Ontario, K1N 6N5, Canada *E-mail: julian.chan@uottawa.ca Group website: julianchangroup.com

NMR spectra of MOF precursors synthesized using literature procedures:

Scheme S1. Synthesis of triphenylbismuth.¹

Figure S1. ¹H NMR spectrum of triphenylbismuth in CDCl₃.

Scheme S2. Synthesis of the Bi-OM-4 precursor dithiol.²

Figure S2. ¹H NMR spectrum of 1,4-bis(isopropylthio)-2,3,5,6-tetrafluorobenzene in CDCl₃.

Figure S3. ¹⁹F NMR spectrum of 1,4-bis(isopropylthio)-2,3,5,6-tetrafluorobenzene in CDCl₃.

Figure S4. ¹H NMR spectrum of 1,2,4,5-tetrafluorobenzene-1,4-dithiol in CDCl₃.

Figure S5. ¹⁹F NMR spectrum of 1,2,4,5-tetrafluorobenzene-1,4-dithiol in CDCl₃.

(All NMR characterization data were compared against literature values and found to be in good agreement.)

Scheme S3. Synthesis of 1,4-(diacetylseleno)benzene.³

Figure S6. ¹H NMR spectrum of 1,4-(diacetylseleno)benzene in CDCl₃.

Thermogravimetric Analysis (TGA)

TGA curves were recorded under an air atmosphere, over the temperature range 25 - 500 °C, using a heating rate of 10 °C min⁻¹.

Figure S7. TGA curve of Bi-OM-1.

Figure S8. TGA curve of Bi-OM-2.

Figure S9. TGA curve of Bi-OM-3.

Figure S10. TGA curve of Bi-OM-4.

Figure S11. TGA curve of **Bi-OM-5**. (N. B. The initial weight increase at 200 °C suggests oxidation of Se centers prior to decomposition and subsequent mass loss at higher temperatures.)

Energy-dispersive X-ray spectroscopy (EDS) Analysis

Figure S12. EDS spectrum of Bi-OM-1.

Figure S13. EDS spectrum of Bi-OM-2.

Figure S14. EDS spectrum of Bi-OM-3.

Figure S15. EDS spectrum of Bi-OM-4.

Figure S16. EDS spectrum of Bi-OM-5.

Structural analysis. Molecular modeling and Pawley refinement were carried out using Reflex plus module of Materials Studio 6.0. We performed Pawley refinements in the 20 range of 2-80° to optimize unit-cell parameters, zero point, and background of Bi-OM-1 until the R_{wp} value converged. The Pseudo-Voigt profile function was used for the whole profile fitting and Berrar-Baldinozzi function was used for asymmetry correction during the refinement processes. The final R_{wp} and R_p values were 6.90% and 5.09%, respectively. A simulated PXRD pattern was calculated from the refined unit cell and compared with the experimentally observed pattern, whereby good agreement was obtained.

Figure S17. Simulated structure of Bi-OM-1 as generated by Materials Studio 6.0 (Accelrys) software.

Figure S18. Simulated vs. experimental PXRD patterns of Bi-OM-1.

Unit cell parameters of Bi-OM-1

Space Group	a (Å)	b (Å)	c (Å)	α(°)	β(°)	γ (°)	V(Å ³)
<i>P</i> 2 ₁	13.101(4)	11.160(3)	4.027(1)	90	95.269(3)	90	586.3

Pawley refinements were also applied to the other four Bi-OMs materials using the same methods as the one employed for Bi-OM-1 due to the similarities in molecular structures of the five Bi-OMs materials. The simulated PXRD patterns of the other four Bi-OMs were also found to be in good agreement with their respective experimental observed patterns. These results are given below.

Figure S19. Simulated vs. experimental PXRD patterns of Bi-OM-2.

Space Group	a (Å)	b (Å)	c (Å)	α (°)	β (°)	γ (°)	V(Å ³)
P2 ₁	13.178(11)	5.719(4)	10.870(9)	90	92.697(10)	90	818.3

Figure S20. Simulated vs. experimental PXRD patterns of Bi-OM-3.

Unit cell parameters of Bi-OM-3

Space Group	a (Å)	b (Å)	c (Å)	α (°)	β (°)	γ (°)	V(Å ³)
$P2_1$	11.025(3)	17.658(5)	9.404(3)	90	107.119(2)	90	1749.7

Figure S21. Simulated vs. experimental PXRD patterns of Bi-OM-4.

Unit cell parameters of Bi-OM-4

Space Group	a (Å)	b (Å)	c (Å)	α (°)	β (°)	γ (°)	V(Å ³)
<i>P</i> 2 ₁	12.054(3)	13.140(4)	7.991(2)	90	102.508(2)	90	1235.7

Figure S22. Simulated vs. experimental PXRD patterns of Bi-OM-5.

Space Group	a (Å)	b (Å)	c (Å)	α (°)	β (°)	γ (°)	V(Å ³)
<i>P</i> 2 ₁	25.943(24)	3.717(4)	11.240(2)	90	129.962(2)	90	830.8

Porosimetry studies. Surface area (BET) measurements indicated that our Bi-OM was of a nonporous nature with low surface area and small pore volumes (representative example shown below in Figure S18), which is commonly encountered with bismuth-containing network structures.⁴ For example, bismuth-organic frameworks tend to adopt dense or layered nonporous structures due to the flexible coordination geometry and high coordination number of bismuth,⁴ and its propensity to form secondary bonding interactions. These

Pore Volume	Surface Area
t-Plot micropore volume: 0.004367 cm ^a /g	Single point surface area at p/p° = 0.300000000: 15.7197 m²/g
BJH Adsorption cumulative volume of pores	BET Surface Area: 18.2771 m ² /g
between 1.7000 nm and 300.0000 nm width: 0.056100 cm³/g	
	t-Plot Micropore Area: 10.5868 m²/g
BJH Desorption cumulative volume of pores	
between 1.7000 nm and 300.0000 nm width: 0.055515 cm*/g	t-Plot external surface area: 7.6903 m²/g
	BJH Adsorption cumulative surface area of pores
Pore Size	between 1.7000 nm and 300.0000 nm width: 8.660 m²/g
BJH Adsorption average pore width (4V/A): 25.9132 nm	
	BJH Desorption cumulative surface area of pores
BJH Desorption average pore width (4V/A): 29.2444 nm	between 1.7000 nm and 300.0000 nm width: 7.5933 m²/g

results further support multiple secondary soft-soft bonding interactions between Bi and S atoms within the

Unit cell parameters of Bi-OM-5

network structure.

Figure S23. Brunauer-Emmett-Teller (BET) surface area and pore volume/size data for Bi-OM-1.

References

- (1) Roberson, A. P. M.; Burford, N.; McDonald, R.; Ferguson, M. J. Coordination complexes of Ph₃Sb²⁺ and Ph₃Bi²⁺: Beyond pnictonium cation. *Angew. Chem. Int. Ed.* **2014**, *53*, 3480-3483.
- (2) Umemoto, T.; Garrick, L.; Saito, N. Discovery of practical production processes for arylsulfur pentafluorides and their higher homologues, bis- and tris(sulfur pentafluorides): Beginning of a new era of "super-trifluoromethyl" arene chemistry and its industry. *Beilstein J. Org. Chem.* **2012**, *8*, 461-471.
- (3) Boer, B.; Meng, H.; Perepichka, D. F.; Zheng, J.; Frank, M. M.; Chabal, Y. J.; Bao, Z. Synthesis and characterization of conjugated mono- and dithiol oligomers and characterization of their self-assembled monolayers. *Langmuir* **2003**, *19*, 4272-4284.
- (4) Inge, A. K.; Köppen, M.; Su, J.; Feyand, M.; Xu, H.; Zou, X.; O'Keeffe, M.; Stock, N. Unprecedented Topological Complexity in a Metal–Organic Framework Constructed from Simple Building Units. J. Am. Chem. Soc. 2016, 138, 1970–1976.