Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Supporting Information for

Spin-Dimer Networks: Engineering Tools to Adjust the Magnetic Interactions in Biradicals

Yulia B. Borozdina, Evgeny A. Mostovich, Pham Thanh Cong, Lars Postulka, Bernd Wolf, Michael Lang and

Martin Baumgarten*

Content:

Table S1. Selected structural data for the nitronyl 1c, 2c and imino 1d, 3d, 4d, 5d nitroxide biradicals	S2
Figure S1. Fragments of the dimeric couple in crystal packing of 1c with the emphasized short contacts	S3
Figure S2. Crystal packing of biradical 2c: view along the b and c axes	S3
Figure S3. Fragment of the crystal packing of $2c$ with emphasized short contacts and π -stacking	S3
Figure S4. Fragment of the crystal packing of 4d with emphasized short contacts and π -stacking	S4
Figure S5. Fragments of the crystal packing of 5d with emphasized short contacts and π -stacking	S4
Table S2. Selected spectroscopic data for the nitroxide biradicals 1c, 2c, 1d, 3d, 4d, 5d	S4
Figure S6. Effective magnetic moment $\mu_{eff} = \chi \cdot T$ and molar susceptibility χ_{mol} of biradicals 1d, 3d, 4d and 5d	S5
Figure S7. Crystal structure of the nitronyl biradical 2c with emphasized short antiferromagnetic contacts	S6

.

	1c	2c	1d	3d	4d	5d
Formula	C ₂₆ H ₃₀ N ₆ O ₄	C ₂₆ H ₃₀ N ₆ O ₄	$C_{26}H_{30}N_6O_2$	C ₂₆ H ₃₂ N ₄ O ₂	C ₂₄ H ₃₀ N ₆ O ₂	C ₂₈ H ₃₂ N ₄ O ₂
М	490	490	458	432	434	456
crystal system	triclinic	monoclinic	triclinic	monoclinic	monoclinic	monoclinic
space group	P-1	P2 ₁ /c	P-1	P2 ₁ /n	P2 ₁ /n	P2 ₁ /n
<i>a</i> , Å	7.3674(2)	10.0305(5)	7.0420(3)	6.2359(6)	6.3011(2)	6.6883(2)
b , Å	13.0178(4)	10.5040(7)	12.9582(9)	10.5265(7)	10.4759(5)	10.3043(4)
<i>c</i> , Å	13.7189(4)	12.3508(6)	14.2234(9)	17.6917(9)	17.1953(7)	18.2359(5)
lpha , deg	90.9445(14)	90	94.407(3)	90	90	90
$\boldsymbol{\beta}$, deg	104.498(2)	102.582(3)	103.761(2)	94.553(4)	98.045	93.231(2)
γ, deg	104.2092(16)	90	102.863(3)	90	90	90
V , A ³	1230.61	1270.04	1217.41	1157.66	1123.89(8)	1254.79(7)
Z	2	2	2	2	2	2
$R_{factor}(\%)$	5.24	5.5	6.21	5.18	5.26	4.01
$\boldsymbol{D}_{\mathbf{c}},\mathbf{g}\times\mathbf{cm}^{-3}$	1.324	1.283	1.251	1.241	1.284	1.208
N _{ref}	7176	3696	6769	2527	3217	3669
N _{par}	325	163	334	154	154	154
S	0.986	1.073	0.978	1.025	1.091	1.112
CCDC	823716	816632	816630	823717	858078	810139

The crystallographic data were collected on Nonius Kappa CCD (Mo k α , μ = 0.71073 Å) diffractometer equipped with a graphite monochromator

Figure S1. Fragment of the dimeric couple in crystal packing of 1c with the emphasized short contacts.

Figure S2. Crystal packing of biradical **2c**: view along the *b* axes (left) and *c* axes (right).

Figure S4. Fragment of the crystal packing of **4d** with emphasized short contacts and π -stacking (view along the *a* axes).

Figure S5. Fragments of the crystal packing of 5d viewed along the *b* axes.

Biradical	IR ^[a]	UV-Vis ^[b]	Mass ^[c] g/mol	EPR
Diradical	$v_{\rm NO}/{\rm cm}^{-1}$	$\lambda_{\text{max}}/\text{nm} (\epsilon/\text{M}^{-1}\text{cm}^{-1})^{[b]}$		a _N /mT
1c	1348	627 (557)	489	0.738
2c	1360	589 (502)	489	0.752
1d	1368	467 (944)	457	0.430, 0.885
3d	1364	461 (1090)	431	0.430, 0.870
4d	1366	462 (1021)	433	0.430, 0.849
5d	1365	468 (1091)	455	0.430, 0.849

Table S2 Selected spectroscopic data for the nitroxide biradicals 1c, 2c, 1d, 3d, 4d, 5d

^[a] Measured in solid state at room temperature (T = 293 K);

^[b] Measured in toluene solution;

 $^{[c]}$ Measured in dichloromethane by FAB. The m/z⁺ (100%) peak corresponds to $[M]^+$

Figure S6. Effective magnetic moment $\mu_{eff} = \chi \cdot T$ per S = ½ spin of biradicals **1d**, **3d**, **4d** and **5d**. Inset: molar susceptibility χ_{mol} as a function of temperature together with fitting calculation.

Figure S7. Crystal structure of the nitronyl biradical **2c**: fragment of the structure with emphasized short antiferromagnetic contacts of 3.514 Å, where the second radical unit of each biradical was replaced by H for the calculations.