Spin-Dimer Networks: Engineering Tools to Adjust the Magnetic Interactions in

Biradicals

Yulia B. Borozdina, Evgeny A. Mostovich, Pham Thanh Cong, Lars Postulka, Bernd Wolf, Michael Lang and Martin Baumgarten*

Content:

Table S1. Selected structural data for the nitronyl 1c, 2c and imino 1d, 3d, 4d, 5d nitroxide biradicals. S2
Figure S1. Fragments of the dimeric couple in crystal packing of $\mathbf{1 c}$ with the emphasized short contacts. S3
Figure S2. Crystal packing of biradical 2c: view along the b and c axes. S3
Figure S3. Fragment of the crystal packing of $\mathbf{2 c}$ with emphasized short contacts and π-stacking S3
Figure S4. Fragment of the crystal packing of $\mathbf{4 d}$ with emphasized short contacts and π-stacking S4
Figure S5. Fragments of the crystal packing of $\mathbf{5 d}$ with emphasized short contacts and π-stacking. 54
Table S2. Selected spectroscopic data for the nitroxide biradicals $\mathbf{1 c}, \mathbf{2 c}, \mathbf{1 d}, \mathbf{3 d}, \mathbf{4 d}, \mathbf{5 d}$ S4
Figure S6. Effective magnetic moment $\mu_{\text {eff }}=\chi \cdot$ T and molar susceptibility $\chi_{\text {mol }}$ of biradicals $\mathbf{1 d}, \mathbf{3 d}, \mathbf{4 d}$ and $\mathbf{5 d}$ 55
Figure S7. Crystal structure of the nitronyl biradical $\mathbf{2 c}$ with emphasized short antiferromagnetic contacts. S6

Table S1. Selected structural data for the nitronyl 1c, 2c and imino 1d, 3d, 4d, 5d nitroxide biradicals

	1 c	2c	1d	3d	4d	5d
Formula	$\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{4}$	$\mathrm{C}_{26} \mathrm{H}_{3} \mathrm{~N}_{6} \mathrm{O}_{4}$	$\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{2}$	$\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{2}$	$\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{2}$	$\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{2}$
M	490	490	458	432	434	456
crystal system	triclinic	monoclinic	triclinic	monoclinic	monoclinic	monoclinic
space group	P-1	$P 2_{1} / \mathrm{c}$	P-1	$P 2_{1} / n$	$P 2_{1} / n$	$P 2_{1} / n$
a, \AA	7.3674(2)	10.0305(5)	7.0420(3)	6.2359(6)	6.3011(2)	6.6883(2)
b, \AA	13.0178(4)	10.5040(7)	12.9582(9)	10.5265(7)	10.4759(5)	10.3043(4)
c, \AA	13.7189(4)	12.3508(6)	14.2234(9)	17.6917(9)	17.1953(7)	18.2359(5)
α, deg	90.9445(14)	90	94.407(3)	90	90	90
$\boldsymbol{\beta}$, deg	104.498(2)	102.582(3)	103.761(2)	94.553(4)	98.045	93.231(2)
γ, deg	104.2092(16)	90	102.863(3)	90	90	90
$\mathbf{V}, \mathrm{A}^{3}$	1230.61	1270.04	1217.41	1157.66	1123.89(8)	1254.79(7)
Z	2	2	2	2	2	2
$\boldsymbol{R}_{\text {factor }}(\%)$	5.24	5.5	6.21	5.18	5.26	4.01
$D_{\text {c }}, \mathrm{g} \times \mathrm{cm}^{-3}$	1.324	1.283	1.251	1.241	1.284	1.208
$N_{\text {ref }}$	7176	3696	6769	2527	3217	3669
$N_{\text {par }}$	325	163	334	154	154	154
S	0.986	1.073	0.978	1.025	1.091	1.112
CCDC	823716	816632	816630	823717	858078	810139

The crystallographic data were collected on Nonius Kappa CCD (Mo $k \alpha, \mu=0.71073 \AA$ Å) diffractometer equipped with a graphite monochromator

Figure S1. Fragment of the dimeric couple in crystal packing of $\mathbf{1 c}$ with the emphasized short contacts.

Figure S2. Crystal packing of biradical 2c: view along the b axes (left) and c axes (right).

Figure S3. Fragment of the crystal packing of $\mathbf{2 c}$ with emphasized short contacts and π-stacking.

Figure S4. Fragment of the crystal packing of $\mathbf{4 d}$ with emphasized short contacts and π-stacking (view along the a axes).

Figure S5. Fragments of the crystal packing of $5 \mathbf{d}$ viewed along the b axes.
Table S2 Selected spectroscopic data for the nitroxide biradicals 1c, 2c, 1d, 3d, 4d, 5d

Biradical	$\mathbf{I R}^{[\mathrm{ab]}}$ $v_{\mathrm{NO}} / \mathrm{cm}^{-1}$	UV-Vis $\lambda_{\max } / \mathrm{nm}\left(\varepsilon / \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)^{[b]}$	Mass $^{[\mathrm{c}]} \mathrm{g} / \mathrm{mol}$	EPR $a_{\mathrm{N}} / \mathrm{mT}$
$\mathbf{1 c}$	1348	$627(557)$	489	0.738
2c	1360	$589(502)$	489	0.752
1d	1368	$467(944)$	457	$0.430,0.885$
3d	1364	$461(1090)$	431	$0.430,0.870$
4d	1366	$462(1021)$	433	$0.430,0.849$
5d	1365	$468(1091)$	455	$0.430,0.849$

${ }^{[a]}$ Measured in solid state at room temperature ($T=293 \mathrm{~K}$);
${ }^{[b]}$ Measured in toluene solution;
${ }^{[c]}$ Measured in dichloromethane by FAB. The $\mathrm{m} / \mathrm{z}^{+}(100 \%)$ peak corresponds to $[\mathrm{M}]^{+}$

Figure S6. Effective magnetic moment $\mu_{\text {eff }}=\chi \cdot$ T per $S=1 / 2$ spin of biradicals $\mathbf{1 d}, \mathbf{3 d}, \mathbf{4 d}$ and $\mathbf{5 d}$. Inset: molar susceptibility $\chi_{\text {mol }}$ as a function of temperature together with fitting calculation.

Figure S7. Crystal structure of the nitronyl biradical 2c: fragment of the structure with emphasized short antiferromagnetic contacts of $3.514 \AA$, where the second radical unit of each biradical was replaced by H for the calculations.

