Electronic Supplementary Information

Low-voltage-driven organic phototransistors based on a solutionprocessed organic semiconductor channel and high *k* hybrid gate dielectric

Bo-Yi Jiang,^a Sureshraju Vegiraju,^b Anthony Shiaw-Tseh Chiang,^a Ming-Chou Chen*^b and

Cheng-Liang Liu*a

^aDepartment of Chemical and Materials Engineering, National Central University, Taoyuan, 32001 Taiwan

^bDepartment of Chemistry, National Central University, Taoyuan 32001, Taiwan. E-mail: mcchen@ncu.edu.tw

*E-mail: mcchen@ncu.edu.tw, clliu@ncu.edu.tw

Experimental

Materials

All the solvents and reagents were purchased from Sigma-Aldrich, Merck and Alfa Aesar and used without further purification. The preparation of hTSO sol precursor and **DDTT-SBT-14** organic semiconductors was according to the pervious literature.^{1,2}

Characterization

Film thickness was measured with DEKTAK 150 Surface Profilometer (Veeco). Polarized optical micrographs were obtained by Leica 2700M. UV-Vis spectrum was characterized by JASCO V-670 UV-Vis spectrophotometer. The atomic force microscope (AFM, Seiko SPA400) was operated under tapping mode at room temperature to investigate the surface roughness. Etched silicon tips with a typical resonant frequency of 160 kHz were employed.

Device fabrication and measurement

Heavily doped n-type Si wafer was diced and cleaned in sulfuric acid/hydrogen peroxide (7:3 v/v) at 110 °C for 40 min, rinsed thoroughly with DI water, dried under nitrogen and used immediately. The *h*TSO dielectric films were deposited by spin-coating the precursor sol onto cleaned Si substrate (6000 rpm, 60 s), then cured under ultraviolet light and baked at 400 °C for 1 h before cooled to room temperature. The as-fabricated *h*TSO films were then immersed in a (2-phenylethyl)trichlorosilane (PETS) solution (5 mM in toluene) at 55 °C for 1 h, followed by rinsing with toluene and blow dried with nitrogen. Solution-shearing organic semiconductors thin films developed by Bao's group³ were prepared through customized

shearing machine where the upper shearing plate (modified with n-octadecyltrichlorosilane (ODTS)) dragged the placed solution (~20 µl) on a heated substrate (50~55 °C) at a controlled shearing rate of 15 µm s⁻¹. Following that, source and drain electrodes were defined on top of the organic semiconducting layer by evaporating a 50 nm thick gold film at 0.5 Å s⁻¹ through a shadow mask. The channel width (*W*) and length (*L*) are 25 µm and 1500 µm, respectively. The capacitance per area (*C*) of *h*TSO gate dielectric was obtained by measuring capacitance-voltage properties of Si/*h*TSO/Au with Agilent E4980A LCR meter. The saturated field effect mobility (μ) and threshold voltage (V_{th}) was estimated in the saturation region from the slope and x-intercept, respectively, of the linear fit of (- I_d)^{1/2} versus V_g data, using the following Eq. (S1):

$$I_d = \frac{W}{2L} C \mu \left(V_g - V_{th} \right)^2 \tag{S1}$$

The subthreshold swing (SS) is calculated by taking the inverse slope of a plot of logarithmic I_d versus V_g in field effect transistor operating region. The blue LED was directly used for irradiation. Two important parameters for organic transistor, namely, photoresponsibility (R) and photosensitivity (P), based on following fundamental equation.

$$R = \frac{I_{ill} - I_{dark}}{P_{ill}}$$
(S2)

$$P = \frac{I_{ill} - I_{dark}}{I_{dark}}$$
(S3)

 I_{ill} : the drain current with illumination (A)

 I_{dark} : the drain current in darkness (A)

 P_{ill} : the incident power (W)

- 1. B.-X. Yang, C.-Y. Tseng, A. S.-T. Chiang and C.-L. Liu, J. Mater. Chem. C, 2015, 3, 968-972.
- S. Vegiraju, B.-C. Chang, P. Priyanka, D.-Y. Huang, K.-Y. Wu, L.-H. Li, W.-C. Chang, Y.-Y. Lai, S.-H. Hung, B.-C. Yu, C.-L. Wang, W.-J. Chang, C.-L. Liu, M.-C. Chen and A. Facchetti, *Adv. Mater.*, DOI: 10.1002/adma.201702414, 1702414.
- G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney and Z. Bao, *Nature*, 2011, 480, 504-508.

Fig. S1 Areal capacitance versus frequency of *h*TSO dielectric film.

Fig. S2 UV-Vis spectrum of solution-sheared DDTT-SBT-14 thin film.

Fig. S3 Output characteristics of DDTT-SBT-14 based organic transistor in dark.

Fig. S4 ON/OFF cycles test of DDTT-SBT-14 based organic phototransistor.