Journal Name

Supporting Information

Sensitized monolayer MoS₂ phototransistors with ultrahigh responsivity

Received 00th January 20xx, Accepted 00th January 20xx

Yujue Yang,^a Nengjie Huo^a and Jingbo Li^{*a,b}

DOI: 10.1039/x0xx00000x

www.rsc.org/

Fig. S1 (a) Transfer characteristics $(I_{sd}-V_g)$ of the pure-few-layer MoS₂ based phototransistors under dark and light illumination in log scale. (b) The corresponding transfer curves in linear scale of y-axis. (c, d) Output characteristics $I_{sd}-V_{sd}$ of few-layer MoS₂ device in dark and light illumination states in log and linear scale of y-axis, respectively. (e) Temporal response of the pure-few-layer MoS₂ at different back gate and a bias voltage V_{sd} of 1 V.

ARTICLE

Fig. S2 (a) Responsivity and (b) photocurrent of pure-few-layer MoS_2 phototransistors at different back gate voltage and a bias voltage V_{sd} of 1 V as a function of lingt power density, respectively. Compared with the sensitized- MoS_2 , the pure-few-layer MoS_2 device also exhibits a smaller responsivity and photocurrent at $V_{sd} = 1$ V.

Fig. S3 (a) The output curves (I_{sd} - V_{sd}) of pure-monolayer MoS₂ device under dark and 14.4 mW/cm² illumination intensities for different back gate V_g in log scale. (b) Corresponding output curves with linear scale of y-axis. It can be observed that the drain current under both dark and illumination is also much smaller than that in sensitized-MoS₂ device.