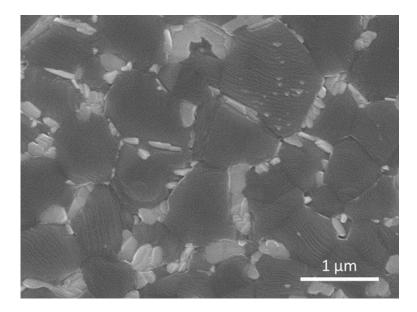
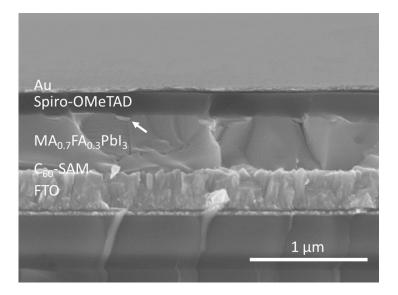
Supporting Information for

Tracking the maximum power point of hysteretic perovskite solar cells using a predictive algorithm


Alexander J. Cimaroli[†], Yue Yu[†], Changlei Wang, Weiqiang Liao, Lei Guan, Corey R. Grice, Dewei Zhao, and Yanfa Yan*

Department of Physics and Astronomy, and Wright Center for Photovoltaic Innovation and Commercialization, The University of Toledo, Toledo, Ohio 43606, USA


[†] These authors contributed equally.

Corresponding Author

*Email: yanfa.yan@utoledo.edu

Fig. S1 Top-view SEM image of a $MA_{0.7}FA_{0.3}PbI_3$ perovskite thin film on FTO/C_{60} -SAM substrate. The bright particles are excessive PbI₂ formed on surface and along grain boundaries, which are due to the use of Pb(SCN)₂ additive in precursor solutions.

Fig. S2 Cross-sectional SEM image of a perovskite solar cell with the device structure of FTO/C_{60} -SAM/MA_{0.7}FA_{0.3}PbI₃/Spiro-OMeTAD/Au. No SnO₂ electron selective layer is used with the intention of preparing perovskite solar cells with large degrees of J-V hysteresis. The bright particle indicated by the white arrow is PbI₂.