Supporting Information

Construction of 9, 9'-Bifluorenylidene-based Small Molecule Acceptor Material by Screening Conformation, Steric Configuration and Repeating Unit Number: A Theoretical Design and Characterization

Ming-Yue Sui, ${ }^{a}$ Yun Geng, ${ }^{\text {b }}$ Guang-Yan Sun, ${ }^{a^{*}}$ Jian-Ping Wangc*
${ }^{a}$ Department of Chemistry, Faculty of Science, Yanbian University, Yanji, Jilin, 133002, China.*E-mail: gysun@ybu.edu.cn
${ }^{b}$ Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China.
${ }^{c}$ Shaanxi Key Laboratory of Natural Products \& Chemical Biology, College of Chemistry \& Pharmacy, Northwest A\&F University, Yangling, Shaanxi, 712100, China. *E-mail: wangjp304@nwsuaf.edu.cn.

Section S.1. Computational Details of Marcus Rate Parameters

S.1.1 Reorganization Energy

The total reorganization energy λ includes internal reorganization energy $\left(\lambda_{\text {int }}\right)$ and external reorganization energy $\left(\lambda_{\text {ext }}\right) .{ }^{1}$ The $\lambda_{\text {int }}$ derive from the changes in the ground-state structures of D and A when they gain or lose charge upon electron transfer, which is expressed as: ${ }^{2}$

$$
\begin{equation*}
\lambda_{\mathrm{int}}=\left[E\left(A^{-}\right)-E(A)\right]+\left[E(D)-E\left(D^{+}\right)\right] \tag{E.1}
\end{equation*}
$$

where $E\left(\mathrm{~A}^{-}\right)$and $E(\mathrm{~A})$ are the energies of the neutral acceptor A at the anionic and optimal ground-state geometries, respectively. $E\left(\mathrm{D}^{+}\right)$and $E(\mathrm{D})$ are the energies of the cation donor D at the neutral and optimal cation geometries, respectively.

However, the $\lambda_{\text {ext }}$ is due to electronic and nuclear polarization from the surrounding medium, which can be approximately evaluated by: ${ }^{3}$

$$
\begin{equation*}
\lambda_{e x t}=\frac{1}{4 \pi \varepsilon_{0}} \Delta e^{2}\left(\frac{1}{2 a_{1}}+\frac{1}{2 a_{2}}-\frac{1}{R}\right)\left(\frac{1}{\varepsilon_{\mathrm{OP}}}-\frac{1}{\varepsilon_{0}}\right) \tag{E.2}
\end{equation*}
$$

where $a_{1}, a_{2}, R, \varepsilon_{\mathrm{OP}}$, and ε_{0} are donor radii, acceptor radii, the distance between the center of the donor and acceptor, and optical and the zero-frequency dielectric constants of the surrounding media, respectively. Considering the reconciliation between the computational cost and the accuracy, $\varepsilon_{\mathrm{OP}}$ and ε_{0} is estimated to be 1.96 and 5 by Troisi ${ }^{4}$ and Jérôme ${ }^{1}$, respectively.

S.1.2 Electronic Coupling

For the calculation of inter-CT and inter-CR rates, the electronic coupling can be approximated from the generalized Mulliken-Hush (GMH) formalism ${ }^{5,6}$ in adiabatic description, which could be written as below:
$V_{\mathrm{DA}}=\frac{\mu_{\mathrm{tr}} \Delta E}{\sqrt{(\Delta \mu)^{2}+4\left(\mu_{\mathrm{tr}}\right)^{2}}}$
where μ_{tr} is the average transition dipole moment, $\Delta \mu$ is the dipole moment difference between initial state S_{0} and final state S_{n}, and ΔE corresponds to the vertical excitation energy. The $\Delta \mu$ can be estimated directly from a finite field method on the excitation energy. ${ }^{2}$

S.1.3 Gibbs Free Energy

In the interface charge transfer processes, Gibbs free energy change of charge recombination $\left(\Delta G_{\text {inter-CR }}\right)$ can be expressed under the equation: ${ }^{7}$

$$
\begin{equation*}
\Delta G_{\mathrm{CR}}=E_{\mathrm{IP}}(\mathrm{D})-E_{\mathrm{EA}}(\mathrm{~A}) \tag{E.4}
\end{equation*}
$$

where $E_{\mathrm{IP}}(\mathrm{D})$ is the ionization potential of the donor which could be estimated by the HOMO energy of the donor, and $E_{\mathrm{EA}}(\mathrm{A})$ is the electron affinity of the acceptor which is considered to be the LUMO energy of the acceptor here. ${ }^{8}$

The Gibbs free energy change of exciton dissociation ($\Delta G_{\text {inter-CS }}$), can be evaluated by the RehmWeller equation: ${ }^{7}$
$\Delta G_{\mathrm{CS}}=-\Delta G_{\mathrm{CR}}-\Delta E_{0-0}-E_{\mathrm{B}}$

Where ΔE_{0-0} is the lowest excited state energy of free-base donor and E_{B} is the exciton binding energy, defined as the energy difference between the electronic and optical band-gap energy. ${ }^{9}$

Tables:

Table S1. Calculated and experimental bond lengths (in \AA), bond angles (in deg) and torsion angles (in deg) of the configuration \mathbf{c} for 99'BF at S_{0} state (B3LYP/6-31G(d)).
c

	Cal.	Exp. $^{\text {a }}$		Cal.	Exp. $^{\mathrm{a}}$
Bond Length (\AA)			Bond Angle (deg)		
$\mathrm{R}(1,10)$	1.400	1.397	$\mathrm{~A}(10,9,13)$	105.4	104.9
$\mathrm{R}(1,2)$	1.397	1.399	$\mathrm{~A}(9,10,11)$	109.0	109.1

$\mathrm{R}(2,3)$	1.399	1.371	$\mathrm{~A}(10,11,12)$	108.3	108.4
$\mathrm{R}(3,4)$	1.397	1.373	Torsion Angle (deg)		
$\mathrm{R}(4,11)$	1.393	1.394	$\mathrm{DA}\left(10,9,9^{\prime}, 10^{\prime}\right)$	34.0	34.0
$\mathrm{R}(9,10)$	1.482	1.476			
$\mathrm{R}(10,11)$	1.419	1.400			
$\mathrm{R}(11,12)$	1.463	1.454			
$\mathrm{R}\left(9,9^{\prime}\right)$	1.381	1.367			

a) Abbreviations: $\mathrm{R}=$ bond length, $\mathrm{A}=$ bond angle, $\mathrm{DA}=$ torsion angle.
${ }^{a}$ Data from reference $[22,68]$.

Table S2. Calculated The FMO energy level (eV) for the P3HT ($n=6$) derivatives at the B3LYP/6$31 \mathrm{G}(\mathrm{d})$ level.

6T:	P3HT(-CH3):		
HOMO	-4.82	-4.98	-4.12
LUMO	-2.15	-1.67	-1.77
E_{g}	2.67	3.31	2.35

Table S3. Calculated bond lengths (in \AA), bond angles (in deg) and torsion angles (in deg) of the configuration \mathbf{p} for $99^{\prime} \mathrm{BF}$ at S_{0} state (B3LYP/6-31G(d)).

	\mathbf{p}		
	Bond Length (\AA)	Bond Angle (deg)	
$\mathrm{R}(1,10)$	1.398	$\mathrm{~A}(10,9,13)$	103.60
$\mathrm{R}(1,2)$	1.399	$\mathrm{~A}(9,10,11)$	108.50
$\mathrm{R}(2,3)$	1.397	$\mathrm{~A}(10,11,12)$	108.30
$\mathrm{R}(3,4)$	1.397		Torsion Angle (deg)
$\mathrm{R}(4,11)$	1.393	$\mathrm{DA}\left(10,9,9^{\prime}, 10^{\prime}\right)$	-9.51
$\mathrm{R}(9,10)$	1.497		
$\mathrm{R}(10,11)$	1.418		
$\mathrm{R}(11,12)$	1.464		
$\mathrm{R}\left(9,9^{\prime}\right)$	1.375		

Table S4. Calculated maximum absorption peaks $\lambda_{\text {max }}(\mathrm{nm})$, oscillator strengths f and major configurations of the \mathbf{p} derivatives at the TD-B3LYP/6-31G(d) level.

	states	$\lambda_{\max }$	\boldsymbol{f}	composition	
p2	S_{1}	466.7	0.695	$\mathrm{H} \rightarrow \mathrm{L}(85 \%)$	$\mathrm{H}-2 \rightarrow \mathrm{~L}(9 \%)$
	S_{5}	424.5	0.481	$\mathrm{H}-4 \rightarrow \mathrm{~L}(15 \%)$	$\mathrm{H}-2 \rightarrow \mathrm{~L}(53 \%)$
$\mathbf{p 3}$	S_{2}	467.1	1.046	$\mathrm{H} \rightarrow \mathrm{L}(90 \%)$	$\mathrm{H}-1 \rightarrow \mathrm{~L}+1(3 \%)$

	S_{9}	415.8	0.435	$\mathrm{H}-1 \rightarrow \mathrm{~L}+1(47 \%)$	$\mathrm{H}-1 \rightarrow \mathrm{~L}+2(7 \%)$
$\mathbf{p 4}$	S_{1}	501.1	1.613	$\mathrm{H} \rightarrow \mathrm{L}(92 \%)$	
$\mathbf{p 5}$	S_{1}	513.8	1.990	$\mathrm{H} \rightarrow \mathrm{L}(96 \%)$	
$\mathbf{p 3 3}$	S_{1}	490.4	1.492	$\mathrm{H} \rightarrow \mathrm{L}(90 \%)$	$\mathrm{H}-1 \rightarrow \mathrm{~L}+1(3 \%)$
	S_{7}	432.2	0.341	$\mathrm{H}-6 \rightarrow \mathrm{~L}(33 \%)$	$\mathrm{H}-4 \rightarrow \mathrm{~L}(23 \%)$
$\mathbf{p 4 4}$	S_{1}	503.9	2.244	$\mathrm{H} \rightarrow \mathrm{L}(88 \%)$	$\mathrm{H}-1 \rightarrow \mathrm{~L}+1(6 \%)$
$\mathbf{p 5 5}$	S_{1}	511.2	2.942	$\mathrm{H} \rightarrow \mathrm{L}(82 \%)$	$\mathrm{H}-1 \rightarrow \mathrm{~L}+1(10 \%)$

Table S5. Computed internal reorganization energy $\lambda_{\text {int }}(\mathrm{eV})$, external reorganization energy $\lambda_{\text {ext }}$ (eV), total reorganization energy $\lambda(\mathrm{eV})$, gibbs free energy change $\Delta G(\mathrm{eV})$ and electronic coupling $V_{\mathrm{DA}}(\mathrm{eV})$ of D/p2-p55 at the TD-CAM-B3LYP/6-31G(d)//B3LYP/6-31G(d) level.

	$\lambda_{\text {int }}$	$\lambda_{\text {ext }}$	λ	V_{DA}	ΔG_{CS}	ΔG_{CR}
$\mathrm{D} / \mathbf{c 2}$	0.27	0.21	0.47	5.61	-0.91	-1.44
$\mathrm{D} / \mathbf{c 3}$	0.23	0.19	0.42	4.68	-0.97	-1.38
$\mathrm{D} / \mathbf{c 4}$	0.23	0.17	0.40	3.87	-1.04	-1.31
$\mathrm{D} / \mathbf{c 5}$	0.23	0.17	0.40	3.34	-1.09	-1.26
$\mathrm{D} / \mathbf{c 3 3}$	0.23	0.17	0.40	2.29	-0.99	-1.36
$\mathrm{D} / \mathbf{c 4 4}$	0.22	0.15	0.37	5.01	-1.02	-1.33
$\mathrm{D} / \mathbf{c 5 5}$	0.20	0.15	0.35	4.56	-1.05	-1.30
$\mathrm{D} / \mathbf{p 2}$	0.27	0.21	0.48	7.63	-1.76	-0.59
$\mathrm{D} / \mathbf{p 3}$	0.23	0.19	0.42	2.65	-1.68	-0.67
$\mathrm{D} / \mathbf{p 4}$	0.23	0.17	0.40	3.87	-1.61	-0.74
$\mathrm{D} / \mathbf{p 5}$	0.23	0.17	0.40	5.22	-1.56	-0.79
$\mathrm{D} / \mathbf{p 3 3}$	0.24	0.17	0.41	2.18	-1.68	-0.67
$\mathrm{D} / \mathbf{p 4 4}$	0.22	0.15	0.37	1.39	-1.63	-0.72
$\mathrm{D} / \mathbf{p 5 5}$	0.20	0.15	0.35	3.97	-1.61	-0.74

Figures:

Figure S1. Illustration of FMO energy levels for the studied compounds and donor (D) evaluated at the B3LYP/6-31G(d) and TD-B3LYP/6-31G(d) levels.

Figure S2. Simulated absorption spectra of the \mathbf{p} derivatives at the TD-B3LYP/6-31G(d) level.

Figure S3. Simulated transition density matrix (TDM) associated with the lowest excited states of p2-p55 (the hydrogen atoms of all systems are omitted), and the color bars are given on the right.

Figure S4. Charge density difference maps of inter-CT excited states for D/p2-p55 heterojunctions at the TD-CAM-B3LYP/6-31G(d)//B3LYP/6-31G(d) level, where the violet and turquoise colors stand for the increase and decrease in electron density, respectively.

References:

1 Lemaur, V.; Steel, M.; Beljonne, D.; Brédas, J. L.; Cornil, J., J. Am. Chem. Soc. 2005, 127, 6077-6086.

2 Li, Y.; Pullerits, T.; Zhao, M.; Sun, M., J. Phys. Chem. C. 2011, 115, 2186521873.

3 Marcus, R. A., J. Chem. Phys. 1956, 24, 966-978.

4 Liu, T.; Troisi, A., J. Phys. Chem. C. 2011, 115, 2406-2415.

5 Voityuk, A. A., J. Chem. Phys. 2006, 124, 064505.
6 Hsu, C.-P., Acc. Chem. Res. 2009, 42, 509-518.

7 Kavarnos, G. J.; Turro, N. J., Chem. Rev. 1986, 86, 401-449.
8 Zhang, X.; Chi, L.; Ji, S.; Wu, Y.; Song, P.; Han, K.; Guo, H.; James, T. D.; Zhao, J.,. J. Am. Chem. Soc. 2009, 131, 17452-17463.

9 Scholes, G. D.; Rumbles, G., Nat. Mater. 2006, 5, 683-696.

