Supporting Information

Highly luminescent YAG:Ce ultra-small nanocrystals, from stable dispersions to thin films.

Mateusz Odziomek, ${ }^{\text {a,b }}$ Frederic Chaput, ${ }^{* a,}$ Frederic Lerouge, ${ }^{\text {a }}$ Maciej Sitarz, ${ }^{\text {b }}$ and Stephane Parola*a
${ }^{\text {a }}$ Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Lyon 1, Laboratoire de Chimie, 46 allée d'Italie, F69364, Lyon, France.
${ }^{\mathrm{b}}$ AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Chemistry of Silicates and Macromolecules, al. A. Mickiewicza 30, 30-059 Krakow, Poland

Fig. S1 Zeta potential measured on the YAG colloidal solution prepared from YAG nanocrystals in water after purification and dialysis ($\mathrm{pH}=7,2$).

Fig. S2 Schematic picture of: a) hydrogen bonding between boehmite layers and b) speculative hydrogen bonding between aggregating particles.

Fig. S3 Schematic picture of bridging bidentate mode of acetates on the surface of YAG. M represents cation of most likely aluminium, but yttrium is also possible.

Fig. S4 FTIR spectra of: YAG as prepared from the mixture of 1,4-BD and DEG in anhydrous conditions (black); washed with acidic water (red); washed with acid and covered with oleic acid (blue)

Fig. S5 Comparison of reaction mixture aspect evolution within time. A) YAG prepared in neat 1,4-BD and b) with DEG and dehydrated precursors. Yellowish colour of colloids appeared when crystalline YAG phase was present. After 4,5h of heat treatment in the mixture of 1,4-BD and DEG, colloid turned greyish - bluish, due to the decomposition of DEG.

Fig. S6 SEM image of YAG:Ce NPs denoted as DEG7W. Clearly, higher amount of water increased the size of NPs.

Fig. S7 UV-VIS spectrum of 15% colloidal solution of YAG:Ce ($0,4 \mathrm{at} \%$) prepared with DEG as cosolvent and dehydrated precursors.

Fig. S8 Photostability of YAG:Ce ($0,4 \% \mathrm{Ce}$) in the form of powder and as obtained colloidal solution (5\% wt.)

