Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Ternary Organic Solar Cells: Compatibility Controls for Morphology Evolution of Active Layers

Qingyun Ai^{*a*}, Weihua Zhou^{*a,b*}, Lin Zhang^{*c*}, Liqiang Huang^{*b*}, Jingping Yin^{*b*}, Zoukangning Yu^{*a*}, Siqi Liu^{*b*}, Wei Ma^{**c*}, Jianrong Zeng^{**d*}, Yiwang Chen^{**a,b*}

^aSchool of Materials Science and Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China

^bCollege of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031,

China

^cState Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an 710049, China

^dShanghai Synchrotron Radiation Facility (SSRF), Shanghai Institute of Applied

Physics, Chinese Academy of Sciences, 2019 Jialuo Road, Shanghai 201800, China

*Corresponding author. Tel.: +86 791 83968703; fax: +86 791 83969561. E-mail: ywchen@ncu.edu.cn (Y. Chen); msewma@mail.xjtu.edu.cn (W. Ma); zengjianrong@sinap.ac.cn (J. Zeng).

Author contributions. Q. Ai and W. Zhou contributed equally to this work.

Figure S1. POM images of (a) *p*-DTS(FBTTh₂)₂, (b) P3BT:*p*-DTS(FBTTh₂)₂, (c) P3HT:*p*-DTS(FBTTh₂)₂, (d) P3OT:*p*-DTS(FBTTh₂)₂, (e) PC₇₁BM, (f) P3BT:PC₇₁BM, (g) P3HT:PC₇₁BM, and (h) P3OT:PC₇₁BM, respectively. The scale bar is 20 μm.

Figure S2. AFM phase images $(5 \times 5 \ \mu\text{m}^2)$ of (a) *p*-DTS(FBTTh₂)₂, (b) P3BT:*p*-DTS(FBTTh₂)₂, (c) P3HT:*p*-DTS(FBTTh₂)₂, (d) P3OT:*p*-DTS(FBTTh₂)₂, (e) PC₇₁BM, (f) P3BT:PC₇₁BM, (g) P3HT:PC₇₁BM, and (h) P3OT:PC₇₁BM, respectively.

Figure S3. Normalized absorption spectra of the *p*-DTS(FBTTh₂)₂:PC₇₁BM film containing 0 wt%, 10 wt% P3BT, 10 wt% P3HT, and 10 wt% P3OT, respectively.

Figure S4. AFM phase images (5 \times 5 µm) of *p*-DTS(FBTTh₂)₂:PC₇₁BM film containing (a) 0 wt%, (b) 10 wt% P3BT, (c) 10 wt% P3HT, and (d) 10 wt% P3OT, respectively.

Figure S5. $J^{1/2}-V$ characteristics of (a) hole-only and (b) electron-only *p*-DTS(FBTTh₂)₂:PC₇₁BM devices containing 0 wt%, 10 wt% P3BT, 10 wt% P3HT, and 10 wt% P3OT. (c) *J*-*V* curve of *p*-DTS(FBTTh₂)₂:PC₇₁BM solar cells containing 0 wt%, 10 wt% P3BT, 10 wt% P3HT, and 10 wt% P3OT. (d) The corresponding EQE measurements.

Figure S6. (a) *J-V* curves of *p*-DTS(FBTTh₂)₂:PC₇₁BM solar cells containing 0 wt%, 10 wt% P3BT, 10 wt% P3HT and 10 wt% P3OT under four optimal conditions: (a) Thermal annealing at 70 °C for 10 min; (b) Post annealing at 100 °C for 10 min; (c) Solvent annealing 30 min; and (d) Solvent annealing 30 min and post-annealing at 100 °C for 10 min.

Figure S7. AFM height and phase images $(5 \times 5 \ \mu\text{m}^2)$ of *p*-DTS(FBTTh₂)₂:PC₇₁BM film containing 0 wt%, 10 wt% P3BT under different annealing conditions.

Figure S8. The contact angle measurements with water on the thin film of *p*-DTS(FBTTh₂)₂, PC₇₁BM, P3BT, P3HT and P3OT.

Figure S9. (a) UV–vis absorption spectra of p-DTS(FBTTh₂)₂ and P3ATs:p-DTS(FBTTh₂)₂ (1:1, w/w) blend. (b) UV-vis absorption spectra of PC₇₁BM and P3ATs:PC₇₁BM (1:1, w/w) blend.

Figure S10. (a) FTIR spectra of *p*-DTS(FBTTh₂)₂ and P3ATs:*p*-DTS(FBTTh₂)₂ (1:1, w/w) blend. (b) FTIR spectra of PC₇₁BM and P3ATs:PC₇₁BM (1:1, w/w) blend.

Figure S11. DSC heating curves of (a) p-DTS(FBTTh₂)₂, P3BT, P3HT, P3OT, and PC₇₁BM; (b) p-DTS(FBTTh₂)₂:PC₇₁BM blends; (c) p-DTS(FBTTh₂)₂:P3ATs blends; and (d) PC₇₁BM:P3ATs blends with different weight ratio.

The calculation of interaction parameters (χ)

Measurement of the melting point temperature (T_m) depression for blends was used to determine the Flory-Huggins interaction parameter (χ) of organic materials in the melting state. The larger the melting point depression, the smaller the value of χ , and the greater the intermolecular interaction.² Equation 3 reflects the melting point depression of organic materials in the presence of a miscible diluent, as derived by Nishi and Wang:³

$$\frac{1}{T_m} - \frac{1}{T_m^0} = -\frac{R v_2}{\Delta H_f v_1} \left[\frac{\ln \Phi_2}{m_2} + \left(\frac{1}{m_2} - \frac{1}{m_1} \right) \times \left(1 - \Phi_2 \right) + \chi \left(1 - \Phi_2 \right)^2 \right]$$
(3)

where, the subscript 1 identified with the weaker crystalline material and 2 with the stronger crystalline material, respectively; $T_{\rm m}$ and $T_{\rm m}^{0}$ are the melting points of the mixture and the pure stronger crystalline material; R is the ideal gas constant, Δ H_f is the heat of fusion of stronger crystalline material; v is the molar volumes, m is the degree of polymerization; and Φ is the volume fraction.

For *p*-DTS(FBTTh₂)₂:PC₇₁BM blends, the subscript 1 identified with the amorphous small molecule PC₇₁BM and 2 with the crystalline small molecule *p*-DTS(FBTTh₂)₂, both m_1 and m_2 are 1; eq 3 therefore reduces to

$$\frac{1}{T_m} - \frac{1}{T_m^0} = -\frac{R v_2}{\Delta H_f v_1} [In \Phi_2 + \chi (1 - \Phi_2)^2]$$
(4)

For P3ATs:*p*-DTS(FBTTh₂)₂ blends, the subscript 1 identified with the semicrystalline polymer P3ATs and 2 with the crystalline small molecule *p*-DTS(FBTTh₂)₂, m_1 is very large compared to 1 and m_2 is 1; eq 3 therefore reduces to

$$\frac{1}{T_m} - \frac{1}{T_m^0} = -\frac{R v_2}{\Delta H_f v_1} [In \Phi_2 + (1 - \Phi_2) + \chi (1 - \Phi_2)^2]$$
(5)

For P3ATs:PC₇₁BM blends, the subscript 1 identified with the amorphous PC₇₁BM and 2 with the semicrystalline polymer P3ATs, m_1 is 1 and m_2 is very large compared to 1; eq 3 therefore reduces to

$$\frac{1}{T_m} - \frac{1}{T_m^0} = -\frac{R v_2}{\Delta H_f v_1} [-(1 - \Phi_2) + \chi (1 - \Phi_2)^2]$$
(6)

By neglecting the effect of entropy and Φ_2 , χ can have the following form

$$\chi = \frac{Bv_1}{RT} \tag{7}$$

where B is the interaction energy density characteristic of the organic material pair. Substituting eq 7 into eq 4, eq 5, and eq 6 yields

$$\frac{1}{\Phi_1} \left(\frac{1}{T_m} - \frac{1}{T_m^0} + \frac{R v_2}{\Delta H_f v_1} \times \ln \Phi_2 \right) = -\frac{B v_2 \Phi_1}{\Delta H_f T_m}$$
(8)

$$-\frac{1}{\Phi_{1}}\left[\frac{1}{T_{m}}-\frac{1}{T_{m}^{0}}+\frac{R^{\nu_{2}}}{\Delta H_{f}\nu_{1}}\times\left(\Phi_{1}+\ln\Phi_{2}\right)\right]=\frac{R^{\nu_{2}}}{\Delta H_{f}\nu_{1}}+\frac{B\nu_{2}\Phi_{1}}{\Delta H_{f}T_{m}}$$
(9)

$$\frac{1}{\Phi_1} \left(\frac{1}{T_m} - \frac{1}{T_m^0} \right) = \frac{R v_2}{\Delta H_f v_1} - \frac{B v_2 \Phi_1}{\Delta H_f T_m}$$
(10)

From eq 8, eq 9, and eq 10 yields three linear relationship between $(1/T_m-1/T_m^0+Rv_2\ln \Phi_2/\Delta H_fv_1)/\Phi_1$ and Φ_1/T_m , $-[1/T_m^0+Rv_2(\Phi_1+\ln \Phi_2)/\Delta H_fv_1]/\Phi_1$ and Φ_1/T_m , $(1/T_m-1/T_m^0)/\Phi_1$ and Φ_1/T_m ; respectively. χ can be extracted by the slope *b* of the linear fit straight line. Due to the temperature of the active layer heating and spin coating is 90 °C, so the final calculated χ value is the interaction parameter of blends at 90 °C.

Table S1. Summary of the hole and electron mobility, μ_h and μ_e and their ratio R_{μ} (= μ_e/μ_h) of *p*-DTS(FBTTh₂)₂:PC₇₁BM device containing 0 wt%, 10 wt% P3BT, 10 wt% P3HT, and 10 wt% P3OT.

Additive content	μ_h	μ_e	μ_h/μ_e
(wt %)	$(cm^2/V \cdot s)$	$(cm^2/V \cdot s)$	
0%	2.24×10-4	3.40×10 ⁻⁵	6.59
10% P3BT	2.83×10-4	8.89×10 ⁻⁵	3.18
10% P3HT	1.68×10 ⁻⁴	1.72×10 ⁻⁵	9.77
10% P3OT	5.58×10 ⁻⁵	1.45×10 ⁻⁵	3.85

Additive	$J_{ m sc}$	$V_{\rm oc}$	FF	PCE
content (wt)	(mA/cm^2)	(V)	(%)	(%)
0%	6.97	0.786	35.7	2.0
5% P3BT	7.66	0.806	44.2	2.7
10% P3BT	8.25	0.812	50.9	3.4
20% P3BT	5.86	0.811	39.2	1.9
5% P3HT	6.87	0.796	37.8	2.1
10% P3HT	6.80	0.797	35.4	1.9
20% P3HT	5.92	0.794	36.5	1.7
5% P3OT	5.85	0.798	36.9	1.7
10% P3OT	5.67	0.765	31.5	1.4
20% P3OT	4.97	0.737	36.4	1.3

Table S2. Summary of the photovoltaic parameters of p-DTS(FBTTh₂)₂:PC₇₁BM solar cells containing different weight ratios of P3BT, P3HT, and P3OT under AM 1.5G solar illumination.

Materials	Surface energy	Wetting coefficient	Predicated location
	(mN m ⁻¹)	$(\omega_{\rm C})$	of P3ATs in the
			blends
<i>p</i> -DTS(FBTTh ₂) ₂	26.46		
PC ₇₁ BM	31.39		
P3BT	23.43	2.24	in p-DTS(FBTTh ₂) ₂
P3HT	23.43	2.24	in p-DTS(FBTTh ₂) ₂
РЗОТ	21.56	3.02	in p-DTS(FBTTh ₂) ₂

Table S3. Surface energy, wetting coefficients, and predicted location of P3BT, P3HT and P3OT within the p-DTS(FBTTh₂)₂:PC₇₁BM matrices.

The calculation of wetting coefficient (ω_C)

The wetting coefficient of material C (ω_C) in blends of materials A and B can be calculated by Young's equation as follows:¹

$$\omega_{C} = \frac{\gamma_{C-B} - \gamma_{C-A}}{\gamma_{A-B}} \tag{1}$$

where γ_{X-Y} is the interfacial surface energy between X and Y. The interfacial surface energy can be calculated by Neumann's equation as follows:

$$\gamma_{X-Y} = \gamma_X + \gamma_Y - 2(\gamma_X \times \gamma_Y)^{0.5} e^{\left[-\beta(\gamma_X + \gamma_Y)^2\right]}$$

where $\beta = 0.000115 \text{ m}^4 \text{ mJ}^{-2}$. If $\omega_C > 1$, the material C will be located in the domain A; If $\omega_C < -1$, C will be located in the domain B; If $-1 < \omega_C < 1$, C will be located in the interface between A and B.

so r for euleulated r fory riuggins interaction parameter.					
Materials	Melting point	Enthalpy	Density	Molar volume	
	(°C)	(J/g)	(g/cm^3)	(cm ³ /mol)	
<i>p</i> -DTS(FBTT ₂) ₂	207.7	69.05	1.15	1059	
PC ₇₁ BM	/	/	1.3	793	
P3BT	265.9	27.95	1.1	125	
P3HT	212.3	23.35	1.1	151	
P3OT	179.6	21.74	1.1	176	

Table S4. The related parameters of p-DTS(FBTT₂)₂, PC₇₁BM, P3BT, P3HT, and P3OT for calculated Flory-Huggins interaction parameter.

REFERENCES

1. Honda, S.; Ohkita, H.; Benten, H.; Ito, S., Selective dye loading at the heterojunction in polymer/fullerene solar cells. *Adv. Energy Mater.* **2011**, 1, 588-598.

2. Ghasemi, M.; Ye, L.; Zhang, Q.; Yan, L.; Kim, J. H.; Awartani, O.; You, W.; Gadisa, A.; Ade, H., Panchromatic Sequentially Cast Ternary Polymer Solar Cells. *Adv. Mater.* **2017**, 29, 1604603.

3. Nishi, T.; Wang, T., Melting point depression and kinetic effects of cooling on crystallization in poly (vinylidene fluoride)-poly (methyl methacrylate) mixtures. *Macromolecules* **1975**, 8, 909-915.