Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Optical Properties of Mn²⁺ doped Cesium Lead Halide Perovskite Nanocrystals via a Caiton-Anion Cosubstitution Exchange Reaction

Fei Li,^a Zhiguo Xia,^{*a} Yue Gong,^b Lin Gu,^b Quanlin Liu^a

^a The Beijing Municipal Key Laboratory of New Energy Materials and Technologies School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China

*Email: <u>xiazg@ustb.edu.cn</u> (Corresponding author)

^b Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P.R. China

Fig. S1 CIE chromaticity diagram for a series of Mn^{2+} doped and undoped samples, synthesized by in situ ion exchange method, excited at 365 nm.

Fig. S2 XRD patterns of CsPbCl₃ QDs and CsPbCl_{1.05} $Br_{1.95}$ QDs. The latter one prepared by the in situ ion exchange method.

Fig. S3 TEM images of (a) $CsPbCl_3 QDs$; (b) $CsPbCl_{1.05}Br_{1.95} QDs$ obtained by in situ ion exchange method.

Fig. S4 Photoluminescence spectra of CsPb_xMn_{1-x}Cl₃ QDs synthesized with different Pb-to-Mn ratio.

Pb-to-Mn molar feed ratio	Element composition	PLQYs (%)
1:1	$CsPb_{0.95}Mn_{0.05}Cl_3$	7
1:4	$CsPb_{0.88}Mn_{0.12}Cl_3$	48
1:7	$CsPb_{0.79}Mn_{0.21}Cl_{3}$	36
1:10	$CsPb_{0.64}Mn_{0.36}Cl_3$	19

Table S1 Summary of the Photoluminescence Tunability of CsPb_xMn_{1-x}Cl₃ QDs

Fig. S5 Photoluminescence spectra of the corresponding $Cs(Pb_xMn_{1-x})(Cl_yBr_{1-y})_3$ QDs obtained by in situ ion exchange method with different end member of $CsPb_xMn_{1-x}Cl_3$. (a) $CsPb_{0.64}Mn_{0.36}Cl_3$ (b) $CsPb_{0.79}Mn_{0.21}Cl_3$.

Fig. S6 Photoluminescence spectra of the corresponding (a) $CsPb(Cl_xBr_{1-x})_3$ QDs and (b) $Cs(Pb_xMn_{1-x})_3$ (Cl_yBr_{1-y})₃ QDs obtained by in situ ion exchange method.

Fig. S7 UV-visible optical absorption of the corresponding $CsPb(Cl_xBr_{1-x})_3$ QDs obtained by in situ ion exchange method.