Supporting information

Insighting Excellent Persistent Luminescence and Detecting Trap Distribution in BaHfSi₃O₉:Eu²⁺,Pr³⁺

Haijie Guo,^{ab} Yuhua Wang,*ab Gen Li,^{ab} Jie Liu,^{ab} Peng Feng^{ab} and Dongwei Liu^{ab}

^a Department of Materials Science, School of Physical Science and Technology,

Lanzhou University, Lanzhou, 730000, P. R. China.

^b Key Laboratory for Special Function Materials and Structural Design of the

Ministry of Education, Lanzhou University, Lanzhou 730000, China.

* Corresponding author: wyh@lzu.edu.cn;

Fax: +86 931 8913554; Tel: +86 931 8912772

Fig. S1 Persistent decay curves of the S3 sample and SrAl₂O₄:Eu²⁺,Dy³⁺.

Fig. S2 The TL spectra of $BaHfSi_3O_9$: Eu²⁺, R³⁺ (R=Dy, Ce, Nd, Ho, Er, Tm, Gd, Tb, Pr).

Fig. S3 TL glow curves of the S3 sample recorded after 254 nm or 365 nm lights excitation for 30 s.