Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

## A small bandgap (3*E*,7*E*)-3,7-bis(2-oxoindolin-3-ylidene)benzo[1,2-*b*:4,5*b'*]difuran-2,6(3*H*,7*H*)-dione (IBDF) based polymer semiconductor for near-infrared organic phototransistors

Yinghui He,<sup>a‡</sup> Jesse T. E. Quinn,<sup>a‡</sup> Dongliang Hou<sup>a,b‡</sup>, Jenner H.L. Ngai<sup>a</sup> and Yuning Li<sup>a</sup>
<sup>a</sup> Department of Chemical Engineering, University of Waterloo, 200 University Avenue
West, Waterloo, Ontario, Canada N2L 3G1

<sup>b</sup> Department of Computer Application Engineering, College of Engineering, Shanghai Polytechnic University, Shanghai, 201209, P.R. China

<sup>‡</sup>These authors made equal contributions.

## Acknowledgments

The authors thank the Natural Sciences and Engineering Research Council (NSERC) of Canada for the financial support (Discovery Grants #402566-2011) of this work.

## Additional data



Figure S1. The molecular structures of dimers with theoretical comparison of bandgap energies and frontier energy levels for P1-Me, P3-Me, and P4-Me.



Figure S2. The optimized geometry and frontier energy levels of P1-Me, P3-Me, and P4-Me.



**Figure S3.** Thermogravimetric analysis (TGA) trace of **P4** (**PIBDFBTO-HH**) with a scan rate of 10 °C min<sup>-1</sup> under nitrogen.



**Figure S4.** Differential scanning calorimetry (DSC) trace of **P4** (**PIBDFBTO-HH**) with a scan rate of 20 °C min<sup>-1</sup> under nitrogen.



**Figure S5.** The cyclic voltammogram (CV) of a **P4** (**PIBDFBTO-HH**) thin film measured in the oxidation cycle under nitrogen in the first oxidation cycle at a scan rate of 0.050 V s<sup>-1</sup>.



**Figure S6.** The cyclic voltammogram (CV) of a **P4** (**PIBDFBTO-HH**) thin film measured in the reduction cycle under nitrogen in the first reduction cycle at a scan rate of 0.050 V s<sup>-1</sup>.



Figure S7. The molecular weight distribution of P4 measured by HT-GPC at 140 °C.



Figure S8. The mobility as a function of gate voltage (V<sub>GS</sub>) for 150 °C-annealed P4.



**Figure S9.** The transfer curves of a typical OPT based on 150 °C-annealed **P4** in the n-channel operation mode at  $V_{DS}$  = 10 V under illumination with 850 nm and 940 nm light sources.



**Figure S10.** The transfer curves of a typical OPT based on 150 °C-annealed **P4** in the p-channel operation mode at  $V_{DS}$  = -10 V under illumination of a white LED (A 10W LED with a colour temperature of 3000 to 3500 K with an emission peak at 579 nm was used as the light source).<sup>1</sup>



Figure S11. The 300 MHz  $^{1}$ H-NMR spectrum of P4 measured in a chloroform-d solution at room temperature.

## References

1. J. T. E. Quinn, F. Haider, H. Patel, D. A. Khan, Z. Wang, and Y. Li, *J. Mater. Chem. C*, 2017, **5**, 8742-8748.