Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information for

Crack-based Nickel@Graphene Wrapped Polyurethane Sponge Ternary

Hybrid by Electrodeposition for Highly Sensitive Wearable Strain

Sensor

Fei Han, ^{ab} Jinhui Li, ^a Songfang Zhao,^c Yuan Zhang,^{ab} Wangping Huang,^{ab} Guoping Zhang,*^a Rong Sun,*^a and Ching-Ping Wong^{de}

^aShenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. *Email: gp.zhang@siat.ac.cn, rong.sun@siat.ac.cn

^bDepartment of Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China.

^cSchool of Material Science and Engineering, University of Jinan, Jinan 250022 Shandong, China. ^dDepartment of Electronics Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China.

^eSchool of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

Contents:

Fig. S1. The sketch of electrodeposition device and the optical photograph of asprepared Ni@GPUS strain sensor.

Fig. S2. The relationship of the resistance and absorption-reduction times, the resistance of six GPUS samples, the response time of the Ni@GPUS strain sensor and the stress-strain curve of the Ni@GPUS strain sensor.

Fig. S3. The width of initial cracks on the nickel film and the SEM of cracks generated on graphene layer at the start of electrodeposition process.

Table S1. Conclusion and comparison of gauge factor (GF) from reported papers aboutflexible strain sensors.

Fig. S1. a) The sketch of electrodeposition device. b) The optical photograph of asprepared Ni@GPUS strain sensor.

Fig. S2. a) The relationship of the resistance and absorption-reduction times. b) The resistance of six GPUS samples, the average resistance is 29.72 k Ω and the most

deviation is only 2%. c) The response time of the sensor. d) The stress-strain curve of the Ni@GPUS strain sensor within 65% strain.

Fig. S3. a) The width of initial cracks on the nickel film. b-c) The cracks generated on graphene layer at the start of electrodeposition process.

Table S1. Conclusion and comparison of gauge factor (GF) from reported papers about

flexible strain sensors

Reference	Materials	Stretchability (%)	GF
(1)	AgNWs-PDMS	70	2-14
(2)	CNT-Ag NP composites	2.4	24-95
(3)	CNTs-Ecoflex	500	1-2.5
(4)	Graphene-rubber	800	10-35
(5)	CBs-PDMS	10	1.8-5.5
(6)	ZnONWs-PDMS	50	114

	Our work	65%	36.03-3360.09
(9)	Platinum (Pt)-PDMS	2	2000
(8)	Graphene foam-PDMS	70	15-29
(7)	AuNWs-PANI-rubber	149.6	20.4-61.4

REFERENCES

- 1 M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu and I. Park, ACS Nano, 2014, 8, 5154.
- 2 K. Takei, Z. Yu, M. Zheng, H. Ota, T. Takahashi and A. Javey, Natl. Acad. Sci. USA, 2014, 111, 1703.
- 3 M. Amjadi, Y. J. Yoon and I. Park, Nanotechnology, 2015, 26, 375501.
- 4 C. S. Boland, U. Khan, C. Backes, A. O'Neill, J. McCauley, S. Duane, R. Shanker, Y. Liu, I. Jurewicz and A. B. Dalton, ACS Nano, 2014, 8, 8819.
- 5 J.-H. Kong, N.-S. Jang, S.-H. Kim and J.-M. Kim, *Carbon*, 2014, **77**, 199.
- 6 X. Xiao, L. Yuan, J. Zhong, T. Ding, Y. Liu, Z. Cai, Y. Rong, H. Han, J. Zhou and Z. L. Wang, *Adv. Mater.*, 2011, **23**, 5440.
- 7 S. Gong, D. T. Lai, Y. Wang, L. W. Yap, K. J. Si, Q. Shi, N. N. Jason, T. Sridhar, H. Uddin and W. Cheng, ACS Appl. Mater. Interfaces, 2015, 7, 19700.
- 8 Y. R. Jeong, H. Park, S. W. Jin, S. Y. Hong, S. S. Lee and J. S. Ha, Adv. Funct. Mater., 2015, 25, 4228.
- 9 D. Kang, P. V. Pikhitsa, Y. W. Choi, C. Lee, S. S. Shin, L. Piao, B. Park, K.-Y. Suh, T.-i. Kim and M. Choi, *Nature*, 2014, **516**, 222.