Supporting Information

Low turn-on voltage and low roll-off rare earth europiumcomplex based organic light-emitting diodes with exciplex as the host

Bo Zhao,^{a,b*} Heng Zhang,^{a,b} Yanqin Miao,^{a,b} Ziqi Wang,^{a,b} Long Gao,^{a,b} Hua Wang,^{a,b} Yuying Hao,^c Bingshe Xu,^{a,b} and Wenlian Li^d

^aKey Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China

^bResearch Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, PR China

^cKey Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, PR China

^dState Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics, and Physics, Chinese Academy of Sciences, Changchun 130033, PR China

*Corresponding author:

E-mail: zhaobo01@tyut.edu.cn

Figure S1. The PL spectra of films with different concentrations Eu(DBM)₃Phen doped into TCTA: Bphen. The direction of arrow represents the doping concentration rise.

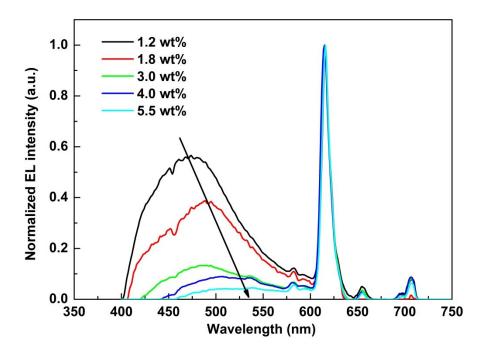


Figure S2. The EL spectra of OLEDs with different concentrations Eu(DBM)₃Phen doped into TCTA: Bphen host. The direction of arrow represents the doping concentration rise.

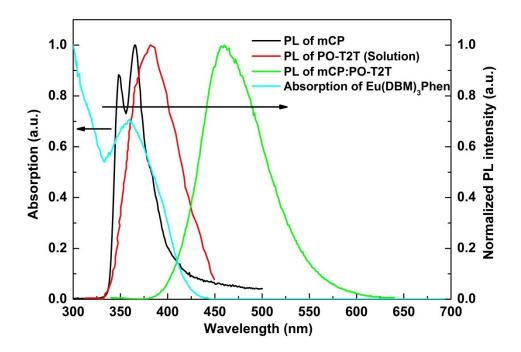


Figure S3. The PL spectra of mCP and mCP: PO-T2T (1:1) films, PO-T2T solution and absorption spectrum of Eu(DBM)₃Phen film.