Supplementary information for

Non-volatile ferroelectric modulation of room temperature electronic transport in La:BaSnO₃/SrTiO₃/PMN-PT heterostructures

Seungyang Heo^{1),+}, Daseob Yoon^{2),+}, Sangbae Yu²⁾, Junwoo Son^{2),*}, and Hyun Myung Jang^{1, 2),*}

¹⁾ Division of Advanced Materials Science (AMS), Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea

²⁾ Department of Materials Science and Engineering (MSE), Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea

⁺ These authors contributed equally to this work.

* jwson@postech.ac.kr

hmjang@postech.ac.kr

	1% LBSO/PMN-PT ("w/o STO")	1% LBSO/STO/PMN-PT ("w/ STO")	1% LBSO on STO substrate
ρ (Ω·cm)	1.58	4.3 X 10 ⁻²	6.19 X 10 ⁻³
n (cm ⁻³)	1.79 X 10 ¹⁸	1.57 X 10 ¹⁹	5.35 X 10 ¹⁹
μ (cm² V ⁻¹ s ⁻¹)	2.2	9.1	18.9

Table S1 | Electrical resistivity, carrier concentration, and mobility of 1% La-doped BaSnO₃ thin films on PMN-PT (001) substrate with/without STO buffer layer and on STO (001) substrate.

Figure S1 | **Ferroelectric and piezoelectric PMN-PT substrate.** (a) The P-E hysteresis loop for the PMN-PT substrate at 300 K. (b) Out-of-plane S-E curve for the PMN-PT substrate for the PMN-PT substrate at 300 K. (c) Illustration of the measurement. The converse piezoelectric behavior (S-E hysteresis) and the P-E hysteresis curves of PMN-PT single crystal substrate were measured at 300 K. (30 nm gold metal are used as top and bottom electrode). Laser Displacement Sensor (LK-G10, Keyence Co. Tokyo, Japan, 10 nm resolution with a spot size of 20 µm) are used for S-E curve and and a ferroelectric test system (P-LC100-K, Radiant Technologies, Albuquerque, NM) are used for P-E curve (10 Hz).

Figure S2 | **Wide angle XRD patterns of LBSO/STO/PMN-PT (001).** No impurity phases are observed within the detection level of XRD.

Figure S3 | **Synchrotron XPS of 10 nm-thick LBSO thin films with and without STO interlayer.** Pb 4f peak appears at the samples without STO interlayer.