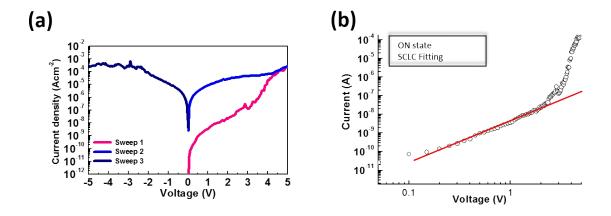
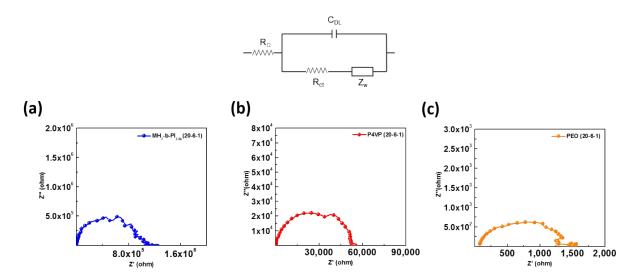
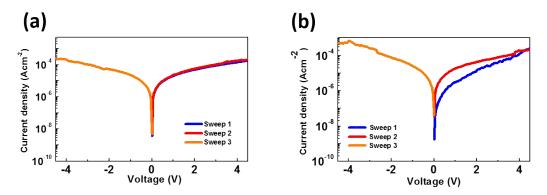

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

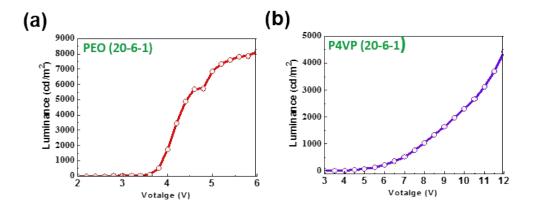
Supporting information


Multi-state Memristive Behavior in the Light-Emitting Electrochemical Cell

Chien-Chung Shih, Chao-Wei Huang, Meng-yao Gao, Chu-Chen Chueh, and Wen-Chang Chen*


Department of Chemical Engineering, National Taiwan University, Taipei, 10617 Taiwan, E-mail: chenwc@ntu.edu.tw


Figure S1. Current–voltage characteristics of the memory devices fabricated with (a) (MEH-PPV)₂₀(MHPI)₄-3 and (b) (MEH-PPV)₂₀(MHPI)₆-5 as the memory layer.


Figure S2. (a) Current–voltage characteristics of the memory device fabricated with a MH7-b-PI_{3.8k} thin layer. (b) space-charge-limited current (SCLC) model fitting for the device.

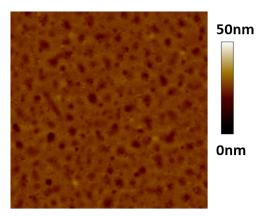

Figure S3. Impedance measurement for (a) (MEH-PPV)₂₀(MHPI)₆-1, (b) (MEH-PPV)₂₀(P4VP)₆-1, and (c) (MEH-PPV)₂₀(PEO)₆-1 in the frequency range of 20 Hz to 1 MHz, respectively. In Randles equivalent circuit, R_{Ω} represents the solution resistance, C_{DL} is the capacitance for the double layer charging process, Rct is the contact resistance contributing to the charge transfer resistance through the electrode-polymer interfaces, and Z_{w} is the Warburg impedance arising from the mass transfer process

Figure S4. (a) Current–voltage characteristics of the memory devices fabricated with (MEH-PPV)₂₀(PEO)₆-1, and (MEH-PPV)₂₀(P4VP)₆-1 as the memory layer.

Figure S5. Optoelectronic properties for (ITO/memory layer /Al). The memory layer is a composite consisting of (a) (MEH-PPV)₂₀(PEO)₆-1 (b) (MEH-PPV)₂₀(P4VP)₆-1

Rms: 2.1nm

Figure S6. AFM image of the memory layer (MEH-PPV)₂₀(MHPI)₆-1 stored in the ambient condition after three months.

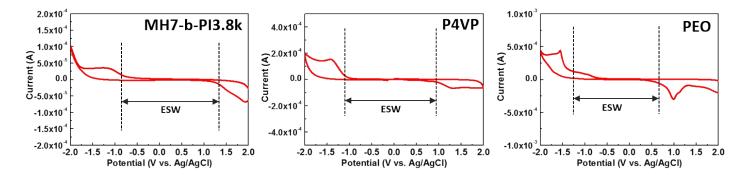
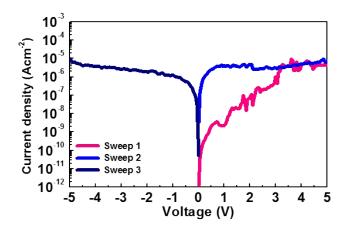
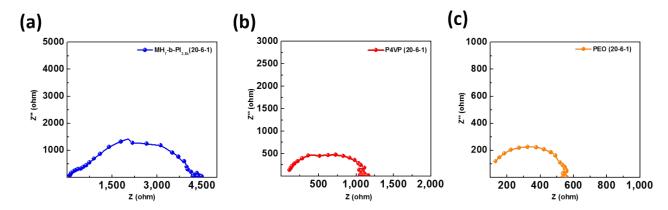




Figure S7. Cyclic voltammetry traces of MH7-b-PI_{3.8k} P4VP and PEO.

Figure S8. Current–voltage characteristics of a memory device fabricated with (MEH-PPV)₂₀(MHPI)₆-0 as the memory layer.

Figure S9. Impedance measurement for (a) (MEH-PPV)₂₀(MHPI)₆-1, (b) (MEH-PPV)₂₀(P4VP)₆-1, and (c) (MEH-PPV)₂₀(PEO)₆-1 after writing (5V charging, 3s), in the frequency range of 20 Hz to 1 MHz, respectively.

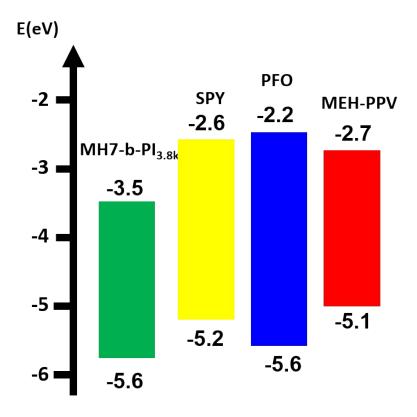


Figure S10. The energy levels for MH7-b-PI $_{3.8k}$ and light-emitters used in this study.