Supporting information

Organic-inorganic perovskite nanowire lasers through kinetically controlled growth and gasphase halide exchange

Xianxiong He[†], Peng Liu[§], Suning Wu[†], Qing Liao[†], Jiannian Yao[§], Hongbing Fu^{*†§}

[†]Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048, P. R. China

§Tianjing Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry Tianjing University, Collaborative Innovation Center of Chemical Science and Engineering Tianjing 300072, P. R. China

*Corresponding Author E-mail: hbfu@cnu.edu.cn (H. B. F)

Figure S1 Length distribution of $CH_3NH_3PbCl_3$ NWs in Figure 1a showing the length of $CH_3NH_3PbCl_3$ NWs range between 5 to 45µm with 87% having lengths between 10 and 30 µ.

Figure S2 Lower magnification image of CH₃NH₃PbCl₃ NWs. It shows the uniformity of NW-microplates mixture.

Figure S3 AFM observation of one single nanowire and the corresponding height showing the smooth surface of the nanowire with heights about 450nm.

Figure S4 The optical images of CH₃NH₃PbCl₃ NWs on silicon(left) and glass(right) substrates. It shows the arbitrary substrates growth of those perovskite NWs.

Figure S5 A) SEM image of a single nanowire. B,C,D,E) The corresponding Energy-dispersive Xray Spectroscopy (EDS) analysis and element mapping of Pb and Cl in A. It presents a Cl/Pb ratio of 53.57/17.06 in good agreement with a PbCl₃ stoichiometry and Cl and Pb elements are uniformly distributed within nanowire of CH₃NH₃PbCl₃.

Figure S6 The diagram of experimental device applying in gas-phase halide exchange. A 70×35 mm beaker contains 20×10 and 10×10 mm beakers surrounded by anhydrous CaCl₂. The sample of MAPbCl₃ NWs on the glass places into the bigger beaker, 30μ L high concentration HBr solution drop into the smallest, and using the Parafilm seal the biggest beaker. When anhydrous CaCl₂ absorb the water in high concentration HBr solution, HBr vapors react with MAPbCl₃ NWs on the glass. The transformation from MAPbBr₃ to MAPbI₃ use the same device as long as changing the sample and HX solution.

CH₃NH₃PbCl₃

6 hours in HBr

6 hours in HI

Figure S7 The original SEM images placed in Figure 2(b,c,d)

Figure S8 The fluorescence microscopy images of exchanged MAPbBr₃. The right had taken after placing the exchanged MAPbBr₃ in glovebox filling with N₂ about 24 hours at room temperature. It shows the nanowires retain the stability after they were treated by HX.

Figure S9 XRD spectrum and bright field microscopy image of the anion-exchanged samples placing $CH_3NH_3PbCl_3$ NWs in HI gas phases at 60°C for 24h. It can be seen that the color of the NWs turn to dark totally, but only little characteristic peaks of $CH_3NH_3PbI_3$ showing in the XRD spectrum.

Figure S10 (A, B) Bright field microscopy images of $CH_3NH_3PbBr_3$ and corresponding crystals placed in HCl gas phase at 60 °C for 12 hours. (C, D) Fluorescence microscopy images of $CH_3NH_3PbI_3$ and corresponding crystals placed in HBr gas phase at 60 °C for 12 hours.

Figure S11 A) SEM image of a single nanowire. B,C,D,E) The corresponding Energy-dispersive X-ray Spectroscopy (EDS) analysis and element mapping of Pb and Br in A. It presents Br and Pb elements are uniformly distributed within nanowire of exchanged CH₃NH₃PbBr₃ and a Br/Pb ratio of 52.62/15.95 in good agreement with a PbBr₃ stoichiometry with little Cl.

Figure S12 A) SEM image of a single nanowire. B,C,D,E) The corresponding Energy-dispersive X-ray Spectroscopy (EDS) analysis and element mapping of Pb and I in A. It presents I and Pb elements are uniformly distributed within nanowire of exchanged CH₃NH₃PbI₃ and a I/Pb ratio of 38.91/14.64 in good agreement with a PbI₃ stoichiometry with little Cl and Br.

Figure S13 The mode spacing $\Delta\lambda$ around λ =780nm versus 1/L of F-P cavity of CH₃NH₃PbI₃ NWs, showing clearly a linear relationship.