Supporting Information

# Surface treatment via Li-bis-(trifluoromethanesulfonyl) imide to Eliminate the Hysteresis and Enhance the Efficiency of Inverted Perovskite Solar Cells

Cong Chen<sup>1,2</sup>, Guang Yang<sup>1</sup>, Junjie Ma<sup>1</sup>, Xiaolu Zheng<sup>1</sup>, Zhiliang Chen<sup>1</sup>, Qi Zhang<sup>1</sup>, Guojia Fang<sup>1, 2\*</sup>

<sup>1</sup> Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China

<sup>2</sup> Shenzhen Institute, Wuhan University, Shenzhen 518055, People's
Republic of China

#### **Experimental Section**

#### Materials

All the chemicals were purchased and used without further purification. CH<sub>3</sub>NH<sub>3</sub>I and PbI<sub>2</sub> were purchased from TCI. [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) was obtained from NANO-C, chlorobenzene, Dimethyl sulfoxide (DMSO) and N,N-dimethylformamide (DMF) were supplied from Aldrich. Others are from Sinopharm Group.

#### NiO<sub>x</sub> film fabrication

FTO glass with sheet resistance of 15  $\Omega/\Box$  was washed with detergent, followed sequentially by ultrasonication with deionized water, isopropyl alcohol and acetone for 10 min, respectively. The preparation of the NiO<sub>x</sub> films were prepared according to the previous report.<sup>1</sup> The precursor solution was prepared by dissolving 25.6 mg nickle acetylacetone in 1 mL ethyl alcohol with 10 uL hydrochloric acid. The solution was stirred for 3 h at 40 °C in a sealed vial before deposition. The precursor solution was deposited on the clean FTO substrates by spin coating at 3000 rpm for 30 s and then the substrates were annealed at 400 °C for 1h in air. For surface treatment, the as-prepared NiO<sub>x</sub> films were treated with the Li-TFSI/acetonitrile (20 mg/1 mL) at 3000 rpm for 30 s, followed by annealing at 300 °C for 1h in air.

#### **Perovskite precursor preparation**

A 40 wt% CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> precursor solution was prepared by mixing PbI<sub>2</sub>, CH<sub>3</sub>NH<sub>3</sub>I and DMSO in DMF with a 1:1:1 molar ratio. The as-prepared precursor solutions were stirred at 60 °C overnight before spin-coating.

## **Device fabrication**

The perovskite precursor solution was spin-coated on the Li-treated NiO<sub>x</sub>/FTO and the pristine NiO<sub>x</sub>/FTO substrates at 4000 rpm for 30s via a fast deposition crystallization method or heterojunction engineering in a Ar-filled glove box. At the 10th second of the spinning, 300  $\mu$ L chlorobenzene or 300  $\mu$ L chlorobenzene dissolving moderate PCBM (1 mg/mL) was dropped. After the perovskite film was annealed at 100 °C for 10 min, a mixture solution of PCBM and chlorobenzene (20 mg mL<sup>-1</sup>) was spin-coated on the perovskite film at 2000 rpm for 30 s and then the substrate was baked at 80 °C for 10 min. Next, a thin layer of BCP (0.5 mg in 1 mL alcohol) was deposited on the top of PCBM layer. Finally, a 70 nm of silver was deposited by thermal evaporation under a vacuum of  $\sim 1 \times 10^{-6}$  Torr. The active area of the device is 0.09 cm<sup>2</sup>.

## Perovskite device characterization

Hall effect measurements was conducted with a hall measurement system (LakeShore 7704A) at room temperature in dark using van der Pauw geometry. The topographic images of  $NiO_x/FTO$  and Li-treated  $NiO_x/FTO$  were characterized by atomic force microscopy (AFM) (SPM-9500J3, Shimadzu, Japan). The cross-sectional image of the PSC with Li-

TFSI treatment and the top morphologies of perovskite layer on different substrates were observed by a field emission scanning electron microscope (FESEM) (JSM 6700F, Japan). The current density-voltage (J-V) curves of the PSCs were measured on a CHI 660D electrochemical workstation (Shanghai Chenhua Instruments, China) with a standard ABET Sun 2000 Solar Simulator. A standard silicon solar cell was used to calibrate the light intensity. The external quantum efficiency (EQE) was conducted by a QE/IPCE system (Enli Technology Co. Ltd. China) in the range of 300~800 nm wavelength. Ultraviolet-visible transmittance and absorbance spectra were measured by an ultraviolet-visible (UV-vis) spectrophotometer (CARY5000, Varian. Australia). Steady-state (PL) spectra were measured by photoluminescence a FLS980 Spectrometer-Edinburgh Instruments. The excitation wavelength was 488 nm. The electrochemical impedance spectra (EIS) were conducted on a CHI 660D electrochemical workstation (Shanghai Chenhua Instruments, China) over a frequency range of 1 MHz  $\sim$  1 Hz applied at 0 bias in the dark. The obtained spectra were fitted with ZView software. The kinetic energy spectra of the NiO<sub>x</sub> films with and without Li-TFSI treatment were characterized by an ultraviolet photoelectron spectroscopy (UPS) system (Thermo Scientific, Escalate 250Xi). The crystallinity of perovskite films was examined by an X-ray diffraction (XRD) (D8 Advance, Bruker AXS, Germany).



Fig. S1 The J-V curves of the perovskite solar cells (PSCs) based on the  $NiO_x$  hole transport layer (HTL) with different annealing temperature.



Fig. S2 XPS spectra of (a) Ni 2p and (b) Li 1s peaks for Li-treated  $NiO_x$  film.



Fig. S3 Ultraviolet photoelectron spectra of the pristine  $NiO_x$  and Li-treated  $NiO_x$  films. Inset is the magnification of secondary cut-off region near binding energy 16 eV.



Fig. S4 Transmission spectra of FTO with  $NiO_x$  film and Li-treated  $NiO_x$  film.



Fig. S5 AFM images of FTO substrates with  $NiO_x$  film and Li-treated  $NiO_x$  film.



Fig. S6 UV-VIS absorption spectra of perovskite layers on the  $NiO_x$  and Li-treated  $NiO_x$  substrates.



Fig. S7 The J-V curves of the PSCs based on the  $NiO_x$  HTL treated with different concentration of Li-TFSI solution.



Fig. S8 Steady-state current density curves of the PSCs based on the Li-treated  $NiO_x$  and pristine  $NiO_x$  as a function of time.

**Table S1** device performance parameters for different annealing temperature of  $NiO_x$ films. Average photovoltaic parameters with standard deviations were obtained basedon 15 cells for each set.

| Temperature<br>(°C) | V <sub>oc</sub><br>(V) | J <sub>sc</sub><br>(mA cm <sup>-2</sup> ) | FF<br>(%)        | PCE<br>(%)       |
|---------------------|------------------------|-------------------------------------------|------------------|------------------|
| 300                 | $1.03 \pm 0.01$        | $15.82 \pm 1.64$                          | $71.20 \pm 2.80$ | $11.63 \pm 1.11$ |
| 400                 | $1.04 \pm 0.01$        | $17.83 \pm 0.47$                          | $72.50 \pm 1.10$ | $13.54 \pm 0.44$ |
| 500                 | $1.07 {\pm} 0.01$      | $18.15 \pm 0.52$                          | $66.90 \pm 3.40$ | $13.02 \pm 0.65$ |

| Li-TFSI salt<br>treatment concentration | Conductivity<br>(S cm <sup>-1</sup> ) | Carrier Density<br>(cm <sup>-3</sup> ) |
|-----------------------------------------|---------------------------------------|----------------------------------------|
| 0 mg/mL Li-TFSI                         | 3.6×10 <sup>-4</sup>                  | 3.63×10 <sup>14</sup>                  |
| 5 mg/mL Li-TFSI                         | 4.2×10 <sup>-4</sup>                  | 3.95×10 <sup>14</sup>                  |
| 10 mg/mL Li-TFSI                        | 6.6×10 <sup>-4</sup>                  | $6.55 \times 10^{14}$                  |
| 20 mg/mL Li-TFSI                        | $7.0 \times 10^{-4}$                  | 2.52×10 <sup>15</sup>                  |
| 30 mg/mL Li-TFSI                        | 4.1×10 <sup>-4</sup>                  | 1.38×10 <sup>15</sup>                  |
| 40 mg/mL Li-TFSI                        | 3.5×10 <sup>-4</sup>                  | $1.16 \times 10^{14}$                  |

**Table S2** Electrical properties of  $NiO_x$  film modified with different concentration ofLi-TFSI solution.

**Table S3** device performance parameters for different concentration of Li-TFSI solution treatment. Average photovoltaic parameters with standard deviations were obtained based on 30 cells for each set.

| Li-TFSI<br>concentration | V <sub>oc</sub><br>(V) | J <sub>sc</sub><br>(mA cm <sup>-2</sup> ) | FF              | PCE<br>(%)       |
|--------------------------|------------------------|-------------------------------------------|-----------------|------------------|
| 5 mg/mL                  | $1.05 \pm 0.02$        | $17.77 \pm 1.13$                          | $0.71 \pm 0.03$ | $13.41 \pm 0.99$ |
| 10 mg/mL                 | $1.05 \pm 0.01$        | $18.14 \pm 1.82$                          | $0.74\pm0.03$   | $14.04 \pm 1.67$ |
| 20 mg/mL                 | $1.06 \pm 0.01$        | $18.83 \pm 0.78$                          | $0.76 \pm 0.01$ | $15.26 \pm 0.61$ |
| 30 mg/mL                 | $1.05 \pm 0.02$        | $18.39 \pm 1.31$                          | $0.74\pm0.03$   | $14.43 \pm 1.25$ |
| 40 mg/mL                 | $1.04\pm0.02$          | $17.55 \pm 2.43$                          | $0.73\pm0.03$   | $13.51 \pm 1.88$ |

# Reference

Z. Zhu, Y. Bai, X. Liu, C. C. Chueh, S. Yang and A. K. Jen, *Adv. Mater.*, 2016, 28, 6478-6484.