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1. Material Synthesis

1.1 General. 
Other reagents without special instructions were purchased from commercial suppliers. 2-Bromophenyl-

phenylsulfane (M1) and 2,7-dibromo-9H-hioxanthen-9-one (M2) were synthesized according to the 

literatures.[S1]

1.2 Synthetic Routes
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Scheme S1. Synthetic routes of DTPA and DAcDB.
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Scheme S4. Synthetic route of DBPA-DSO2.
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2. Density Functional Theory (DFT) Computation

All of the simulations were performed using the Gaussian 09-B01 program package.[S2] Geometry 

character and transition property of these ICT molecules were computed by the density functional theory 

(DFT) and time-dependent density functional theory (TD-DFT). Considering that the ground state (S0) 

geometry is less sensitive to the exchange correlation (XC), S0 geometry was optimized using a B3LYP 

functional and 6-31G* basis set. A hybrid meta-generalized gradient-approximation (GGA) functional M06-2x 

was employed for TD-DFT calculation of excited state because of its testified effectiveness to provide 

intermediate results for ICT molecules.[S3] Through the advance of DFT computation by recent years, the 

ground and excited state property of ICT molecules could have been predicted quite precisely. However, it is 

still a tough task to credibly Fig. out these properties of inter-CT systems, which possess a long range 

interaction and much more complex accumulation modes of the separated donor and acceptor. Thereby, the 

DFT calculation was only employed to investigate the quantum chemical property of ICT emitters in this 

work.
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Scheme S8. Molecular structures and spatial distributions of HOMOs and LUMOs of ICT molecules.

The spatial distributions of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular 

orbital (LUMO) of these molecules are shown in Scheme S7, and the extracted key parameters from the DFT 

calculation are summarized in Table S1. The HOMOs and LUMOs are roughly distributed on the respective donor 

and acceptor moieties for these emitters, indicating their ICT property. The values of calculated HOMO levels of 

these molecules are around -5.0 ± 0.2 eV, and their defined values are affected by the orbital components. The 

rather large orbital component of HOMO contributed from DSO2 fragment results in the lowest HOMO level for 
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DBPA-DSO2. The changing trends are roughly consistent with the experimental values obtained from CV 

measurement. The oscillator strengths (f) of DTPA-DSO2 and DBPA-DSO2 are several orders of magnitude larger 

than those of DAcDB-DSO2 and DAc-DSO2, which could be ascribed to the discrepant exchange integral between 

their HOMO and LUMO levels. The dihedral angles between the donor and acceptor units of acridine-containing 

molecules are significantly larger than the phenylamine-containing molecules. A more compact molecular 

geometry of DAc-DSO2 yields much larger dihedral angles (close to 90°) than the other three ICT molecules, and 

this benefits in a much smaller singlet and triplet splitting energy (ΔEST). The calculated ΔEST values of these ICT 

emitters are in coincidence with the experimental results extracted from their PL spectral data.

Table S1. Summary of DFT computation data of ICT emitters.

Molecules α1/α2 (°) l1/l2 (Å)
HOMO 

(eV)
LUMO 

(eV)
S1   (eV) T1     

(eV) f
ΔE

ST 
(eV)

DTPA-DSO2 28.6/34.6 1.48/1.48 -4.98 -1.54 3.795 3.086 1.5192 0.709

DBPA-DSO2 n.a./n.a. 1.41/1.41 -5.20 -1.22 4.074 3.336 0.8722 0.738

DAc-DSO2 89.2/86.4 1.43/1.43 -4.99 -1.69 3.508 3.500 0.0000 0.008

DAcDB-DSO2 31.4/39.0 1.49/1.49 -4.86 -1.86 3.678 3.600 0.0002 0.078
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3. Further Experimental Details

3.1 Device fabrication

OLEDs were grown on glass substrates pre-coated with a 95-nm-thin layer of indium tin oxide (ITO) with a 

sheet resistance of 10 Ω/square. The substrates were thoroughly cleaned in ultrasonic bath of acetone, isopropyl 

alcohol, detergent, deionized water, and isopropyl alcohol and treated with O2 plasma for 20 min in sequence. 

Organic layers were deposited onto the ITO-coated substrates by high-vacuum (<5×10−4 Pa) thermal evaporation. 

Cathodes consisting of a 1-nm-thin layer of LiF followed by a 120-nm-thin layer of Al, were patterned using a 

shadow mask with an array of 3 mm × 3 mm openings. Deposition rates are 1~2 Å s-1 for organic materials, 0.1 Å s-

1 for LiF, and 6 Å s-1 for Al, respectively. For each batch of device fabrication, four devices with a same device 

conFig.uration were simultaneously obtained. EL spectra were recorded by a spectrophotometer (Photo Research, 

PR705). The current-density–voltage–luminance characteristics were measured using a Keithley source measure 

unit 2400 and a Minolta CS200 luminance meter, respectively. EQE was calculated from the luminance, current 

density, and EL spectrum, assuming a Lambertian distribution. The emissive area of all the devices is 0.09 cm-2. 

The performances of each type device have been verified based on at least 4 devices, while the device 

performances of key devices including DAc-DSO2, DTPA-DSO2 and DBPA-DSO2 as an emitter have been confirmed 

based on at least 16 devices (>3 batches of fabrication).

3.2 Measurement Details of PL Emission Spectra

Steady-state and transient photoluminescence (PL) was measured with an Edinburgh FL980 fluorescence 

spectrophotometer. Transient PL spectra were carried out based on the time-correlated single photon counting 

(TCSPC) technique. The total detective channel amount for time-resolved PL measurements is 8000, so the 

temporal resolution depends on the selected time range for each measurement. The temporal resolution to 

measure nanosecond- and microsecond-scale transient PL data in this study is 0.0625 and 6.25 ns/channel, 

respectively. A picosecond light-emitting diode with a peak wavelength of 296.6 nm, a pulse width of 831.8 ps and 

a bandwidth of 10 nm was adopted as the excitation source in the transient PL emission experiment. 

Measurement of the lowest singlet and triplet state (S1 and T1) values of the investigated materials was 

performed using a spectrometer with the gate-delayed accessory (Horiba Jobin Yvon, FL-3). These values are 

extracted from their low-temperature emission spectra at 77 K frozen in toluene. The phosphorescence spectra 

with a 50 µs delay time were compared with the low-temperature emission spectra to exactly distinguish 

fluorescence and phosphorescence emission band. S1 and T1 values are calculated from the following equation: S1 

or T1 =hc/λpeak, where λpeak corresponds to the highest emission peak of the fluorescence and phosphorescence 

emission band, respectively, h is the Plank constant, c is the speed of light in vacuum. 
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4. Other Supplementary Figures and Tables
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Fig. S1 Excitation spectra of the developed ICT and inter-CT systems recorded at their corresponding 

emission peak, respectively.

Table S2 The fitting parameters of PL transient decay curves by the decay model: I(t)=I0 +A1exp(-t/τ1) or I(t)=I0 

+A1exp(-t/τ1)+ A2exp(-t/τ2).

Sample τ1 (ns) A1

Prompt 

proportion 

(%)

τ2 (ns) A2

Delayed 

proportion 

(%)

χ2

DTPA 2.44 983 100 - - - 0.579

DAcDB 5.71 1016 100 - - - 0.267

DSO2 0.46 1149 100 - - - 0.282

DTPA:DSO2 3.61 750 65.7 11.1 127 34.3 0.271

DAcDB:DSO2 6.88 867 72.9 33.1 66.8 27.1 0.798

DTPA-DSO2 3.06 929 100 - - - 0.429

DBPA-DSO2 2.71 901 100 - - - 0.527

DAcDB-DSO2 4.11 741 49.9 19.1 159 50.1 1.108

DAc-DSO2 25.5 930 44.8 2081 14.0 55.2 0.716

DTPA:TmPyTZ 42.4 721 17.7 2307 61.5 82.3 1.161

DAcDB:TmPyTZ 50.0 643 14.0 1992 99.6 86.0 1.276
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Fig. S2 PL emission spectra of (a) DSO2 and (b) AcB in toluene solution at room temperature (RT) and 77 K.
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Fig. S3 Transient PL decay profiles of DAc-DSO2 thin films under various temperatures. The positive 

correlation of the fractions of long-lived decay components and the temperature confirms the TADF 

property of DAc-DSO2.
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Fig. S4 Comparison of time-resolved PL emission spectra of the binary-mixed films at various sliced times 

(unit: ns) and the EL emission spectra of the devices thereof at 1 and 5 mA cm-2: (a) DAcDB:DSO2 and (b) 

DTPA:DSO2.

      

0

0.5

1

1.5

450 500 550 600

DAcDB:TmPyTZ

DTPA:TmPyTZ

PL
 in

te
nn

si
ty

 (a
.u

.)

Wavenlength (nm)

(a)

100

101

102

103

DAcDB:TmPyTZ

DTPA:TmPyTZ

0 5 10 15 20

P
L 

in
te

ns
ity

 (a
.u

.)

t (s)

(b)

Fig. S5 (a) PL emission spectra and (b) transient PL decay curves of DAcDB:TmPyTZ and DTPA:TmPyTZ.
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Fig. S6 (a) Current density-luminance versus voltage (J-V-L) and (b) external quantum efficiency versus 

luminance (EQE-L) characteristics (inset: EL spectra at 1 mA cm-2) of OLEDs with an inter-CT emitter in a 

configuration of ITO/ DTPA or DAcDB (60 nm)/DTPA:TmPyTZ or DAcDB:TmPyTZ (1:1, wt, 20 nm)/TmPyTZ (50 

nm)/LiF (1 nm)/Al (150 nm).
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Fig. S7 Cyclic voltammogram (CV) characteristics of the developed compounds measured in 0.1 M n-Bu4NPF6 

in CH2Cl2:CH3CN (4:1, v/v) solution. All these compounds were measured under the same experimental 

conditions. The redox potential (E1/2) of ferrocene/ferrocenium (Fc/Fc+) was measured to be 0.47 V. Given 

that the redox potential of Fc/Fc+ has an absolute energy level of −4.80 eV compared to a vacuum, HOMO 

energy levels of the current materials could be estimated according to the following equation: HOMO = –e 

(Eox +4.33) eV, where Eox is the relevant oxidation potential. LUMO energy levels were estimated from their 

optical bandgaps (Eg
opt) and HOMOs using this equation: LUMO = HOMO+ Eg

opt
.
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Fig. S8 (a) TGA and (b) DSC thermograms of the developed materials recorded at a heating rate of 10 °C min-

1.

Fig. S9 Original 1H NMR spectrum of DTPA.
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Fig. S10 Original 13C NMR spectrum of DTPA.
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Fig. S11 Original HRMS spectrum of DTPA.
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Fig. S12 Original 1H NMR spectrum of DAcDB.

Fig. S13 Original 13C NMR spectrum of DAcDB.
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Fig. S14 Original HRMS spectrum of DAcDB.

Fig. S15 Original 1H NMR spectrum of DSO2.
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Fig. S16 Original 13C NMR spectrum of DSO2.
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Fig. S17 Original HRMS spectrum of DSO2.
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Fig. S18 Original 1H NMR spectrum of DBPA-DSO2.

Fig. S19 Original 13C NMR spectrum of DBPA-DSO2.
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Fig. S20 Original HRMS spectrum of DBPA-DSO2.

Fig. S21 Original 1H NMR spectrum of DAc-DSO2.
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Fig. S22 Original 13C NMR spectrum of DAc-DSO2.
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Fig. S23 Original HRMS spectrum of DAc-DSO2.
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Fig. S24 Original 1H NMR spectrum of DTPA-DSO2.

Fig. S25 Original 13C NMR spectrum of DTPA-DSO2.
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Fig. S26 Original HRMS spectrum of DTPA-DSO2.

Fig. S27 Original 1H NMR spectrum of DAcDB-DSO2.
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Fig. S28 Original 13C NMR spectrum of DAcDB-DSO2.
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Fig. S29 Original HRMS spectrum of DAcDB-DSO2.
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DBr-DSO2

Fig. S30 Original 1H NMR spectrum of DBr-DSO2 (2,7-dibromo-9,9'-spirobi[thioxanthene] 10,10,10',10'-

tetraoxide).

Fig. S31 Original 13C NMR spectrum of DBr-DSO2.
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