An excellent cyan-emitting orthosilicate phosphor for NUV-pumped white LED application

Yongfu Liu,^{1,} * Jack Silver,^{2,} * Rong-Jun Xie,³ Jiahua Zhang,⁴ Huawei Xu,⁵ Hezhu Shao,¹ Jun Jiang,¹ and Haochuan Jiang¹

1 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, No. 1219 Western Zhongguan Road, Ningbo 315201, China;

2 Centre for Phosphor and Display Materials, Wolfson Centre for Materials Processing, Brunel University London, Kingston Lane Uxbridge Middlesex, London UB8 3PH, United Kingdom;

3 Sialon Group, National Institute for Materials Science (NIMS), Namiki 1-1 Tsukuba, Ibaraki 305-0044, Japan;

4 State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Eastern South Lake Road, Changchun 130033, China;

5 The Fifth Research Institute of MIIT, Quality Inspection and Testing Center, No. 110 Dongguan Zhuang Road, Guangzhou 510610, China.

*Corresponding author Email: <u>liuyongfu@nimte.ac.cn</u> jack.silver@brunel.ac.uk

Figure S1 XRD patterns for BLS: xCe^{3+} (x = 0.01-0.15).

Figure S2 Rietveld refinement of BLS:5%Ce³⁺. Observed, calculated, background, difference and *hkl* of the XRD pattern are plotted in the same range. The pattern contains two phases: $Ba_9Lu_2Si_6O_{24}$ (magenta) and Ba_2SiO_4 (6246-ICSD, cyan).

Figure S3 Refined lattice parameters *a* and *c* and unit cell volume *V* for BLS: xCe^{3+} (*x* = 0.01-0.15).

Figure S4 Optical band gap of the BLS host determined by extrapolating the DR curve (M-1) against wavelength (a) and against energy (b), the F(R) curve (M-2) against wavelength (c) and against energy (d), $(hvF(R))^2$ for a direct band gap (e) and $(hvF(R))^{(1/2)}$ for an indirect band gap (M-3).

Figure S5 Optical band gap of the BYS host determined by extrapolating the R curve

(M-1) against wavelength (a) and against energy (b).

Figure S6 Temperature-dependent of normalized internal and external QEs for BLS:11%Ce³⁺ and fitting results by the Arrhenius equation.

Figure S7 Temperature dependence of normalized internal QEs (a), internal QEs (b) and absorbance (c) for BLS:11%Ce³⁺.

x	а	С	V	$R_{ m WP}$	$R_{ m P}$	χ^2
x = 0.01	9.991742	22.109903	1911.613	7.87%	5.89%	5.104
x = 0.03	9.992314	22.112038	1912.016	10.4%	7.55%	8.682
x = 0.05	9.992594	22.111609	1912.086	7.74%	6.07%	4.416
x = 0.07	9.992785	22.112505	1912.236	9.05%	6.68%	6.658
x = 0.09	9.993217	22.112343	1912.388	9.23%	7.25%	6.268
x = 0.11	9.993797	22.114502	1912.797	10.9%	8.58%	8.946
x = 0.13	9.994432	22.115292	1913.108	10.8%	8.71%	9.958
x = 0.15	9.994613	22.117237	1913.346	11.4%	8.90%	8.961

Table S1 Rietveld refinement and Crystal data for $Ba_9Lu_{2-x}Ce_xSi_6O_{24}$ (x = 0.01-0.15).

Table S2 Atomic Parameters, x, y, z, occupancy, Uiso and Wyckoff position for

atom	x	У	Z	Occupancy	Uiso*100	Wyckoff position
Bal	0.00000(0)	0.00000(0)	0.00000(0)	1.0000	0.82(3)	3a
Ba2	0.33330(0)	0.66670(0)	0.00420(1)	1.0000	0.57(7)	6c
Ba3	0.03203(0)	0.67011(8)	0.10848(5)	1.0000	0.77(1)	18f
Lu	0.00000(0)	0.00000(0)	0.16383(5)	1.0000	2.53(1)	6c
Si	0.33854(5)	0.01357(8)	0.07356(3)	1.0000	2.86(4)	18f
01	0.35161(6)	0.05826(1)	0.00330(7)	1.0000	6.72(6)	18f
02	0.49420(1)	0.14148(0)	0.10621(8)	1.0000	2.04(4)	18f
03	-0.03290(3)	0.16891(2)	0.10333(8)	1.0000	0.40(0)	18f
O4	0.16581(9)	0.47469(8)	0.09243(3)	1.0000	0.69(2)	18f

Ba₉Lu₂Si₆O₂₄:5%Ce³⁺.

Table S3 Selected Bond Distances for $Ba_9Lu_2Si_6O_{24}$:5%Ce³⁺.

Bond	Distance (Å)	Bond	Distance (Å)	
Ba1-O1 (6×)	3.298(4)	Ba3-O1	2.548(7)	
Ba1-O3 (6×)	2.861(1)	Ba3-O2	2.981(6)	
Ba2-O1 (3×)	2.893(4)	Ba3-O2	3.065(7)	
Ba2-O2 (3×)	3.115(3)	Ba3-O2	3.086(8)	
Ba2-O4 (3×)	2.776(6)	Ba3-O3	2.929(7)	
Lu-O2	2.163(0)	Ba3-O3	3.038(3)	
Lu-O3	2.225(7)	Ba3-O3	3.176(6)	
Si-O1	1.589(1)	Ba3-O4	2.703(2)	
Si-O2	1.671(3)	Ba3-O4	2.718(5)	
Si-O3	1.653(6)	Ba3-O4	3.113(1)	
Si-O4	1.629(1)			