Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Surface-Modified TiO₂ Nanorod Array/P(VDF-HFP) Dielectric Capacitor with Ultra High Energy Density and Efficiency

Shudi Liao, Zhonghui Shen, Hao Pan, Yang Shen, Yuan-Hua Lin*, Ce-Wen Nan

Figure S1. FTIR spectra of (a) TNA before and after the surface modification; (b) TNA after modification and dopamine hydrochloride powder.

Table S1. The frequencies of experimental peaks of modified TNA's FTIR spectra correspond to the dopamine vibrations.

Wavenumber(cm ⁻¹)	Dopamine Vibration
1616	Arom. $\sigma_{PP}(\nu_{PP})$
1599	β₂₂ _□ ,asym
1514	Arom. $\sigma_{22}(v_{222})$
1501	Arom. $\sigma_{\mathbb{PP}}(v_{\mathbb{PPP}})$
1470	Arom. $\sigma_{\mathbb{PP}}(v_{\mathbb{PPP}})$
1443	$\beta_{\mathbb{Z}\mathbb{Z}_{\mathbb{Z}}}$ (scissoring, C8)
1321	$\beta_{\mathbb{ZZ}}$ (in – phase)
1286	$\tau_{\mathbb{Z}\mathbb{Z}_{\mathbb{Z}}}$ (torsion, C8)
1204	β_{222} (out – of – phase)
1148	Arom. $\beta_{\mathbb{Z}}$ (C5/C6)

Figure S2. FTIR spectra of pure P(VDF-HFP).

Table S2. The frequencies of experiment peaks of pure P(VDF-HFP)'s FTIR spectra correspond to the vibration.

Wavenumber I cm ⁻¹ I	Phase type	Vibration
613	α	CF ₂ bending and wagging I PVDF chain rocking
762	α	
797	α	
841	β	CH ₂ rocking
854	α	
873	β	CH ₂ rocking and CF ₂ streching
976	α	
1180	β	CH ₂ rocking and wagging
1281	β	

Figure S3. Element mappings of the section of TNA/P(VDF-HFP).

Figure S4. D-E loops of TNA/P(VDF-HFP) with different spin-coating times.

Figure S5. Schematic illustration for the D-E loop measurement of TNA/P(VDF-HFP).

Figure S6. Sectional view SEM image of unmodified TNA/P(VDF-HFP).

Figure S7. XPS spectrum of TNA before dopamine modification (black line) and after dopamine modification (red line). The presence of nitrogen containing groups, as indicated by the peaks of N 1s electrons, after coating process can be easily distinguished.

Figure S8. TGA spectra of Composite-5 and P(VDF-HFP). The TiO₂ weight ratio of Composite-5 is about 4.8%, and corresponding to the volume fraction $\sim 2.1\%$.