Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Study of Effect of Pyridine Linkers on Viscosity and Electrochromic Properties of Metallo-Supramolecular Coordination Polymers

Supplementary Information

Sandesh Pai,^a Marco Schott,^b Lukas Niklaus,^b Uwe Posset,^b and Dirk G. Kurth*^a

^aJulius-Maximilians-Universität Würzburg, Chemische Technologie der Materialsynthese,

Röntgenring 11, D-97070 Würzburg, Germany

^bFraunhofer-Institut für Silicatforschung ISC, Neunerplatz 2, D-97082 Würzburg, Germany

Phone: +49-(0)931-31-82631; Fax: +49-(0)931-31-82109;

*E-Mail: dirk.kurth@matsyn.uni-wuerzburg.de

Contents

Scheme S1. Numbering scheme for ligands L1-L3.

Figure S1. Synthesis of FeL2- and FeL3-MEPE by conductometric titration.

Figure S2. Normalized emission spectra of ligands L2-L3.

Figure S3. Normalized emission spectra of RuL2-MEPE.

Figure S4: Electronic absorption spectra of Fe-, Co-, and Ru-MEPE thin films on FTO-coated glass.

Figure S5: Cyclic voltammogram of RuL2-MEPE thin film.

Figure S6: *In situ* spectro-electrochemical characterization of **Fe-MEPE** thin films before and after 1,000 switching cycles.

Figure S7: In situ spectro-electrochemical characterization of RuL2-MEPE thin film.

Figure S8: In situ spectro-electrochemical characterization of Fe-, Co-, and Ru-MEPE thin films.

Figure S9: Bleaching/coloring times of Fe-MEPE thin films.

Figure S10: ¹H NMR spectrum of ligand L1 in CDCl₃.

Figure S11: ¹³C NMR spectrum of ligand L1 in CDCl₃.

Figure S12: ¹H NMR spectrum of ligand L2 in CDCl₃.

Figure S13: ¹H NMR spectrum of ligand L3 in CDCl₃.

Figure S14: ¹³C NMR spectrum of ligand L3 in CDCl₃.

L2

L3

Scheme S1. Numbering scheme for ligands L1-L3.

Figure S1. Synthesis of **FeL2-** and **FeL3-MEPE** by conductometric titration of a solution of ligand **L2** and **L3**, respectively, in 75% acetic acid (c = 9 mM) with Fe(II) acetate solution (c = 18 mM) in 75% acetic acid at 25 °C, under argon atmosphere.

Figure S2. Normalized emission spectra of ligands **L2** (λ_{exc} = 318 nm) and **L3** (λ_{exc} = 326 nm) in chloroform.

Figure S3. Normalized emission spectra of **RuL2-MEPE** at room temperature in MeOH/Water (4:1 v/v) solution by exciting (a) ligand-centered (LC) transition at 334 nm, and (b) MLCT transition at 505 nm.

Figure S4. Overlay of the electronic absorption spectra of **Fe-, Co-, and Ru-MEPE** thin films on FTOcoated glass (dimension: 1.0 cm x 3.0 cm) fabricated by dip coating at a withdrawing speed of 100 $\text{mm}\cdot\text{min}^{-1}$.

Figure S5. Cyclic voltammogram at different scan rates (from 5 to 100 mV·s⁻¹) of **RuL2-MEPE** thin film on FTO coated glass (dimension: 1 cm x 1 cm) at room temperature. Counter and reference electrode: Li. Electrolyte: 0.2 M TBAH in anhydrous DCM.

Figure S6. *In situ* spectro-electrochemical characterization of **FeL2-MEPE** (a) and **FeL3-MEPE** (b) thin films on FTO coated glass before and after 1,000 switching cycles at room temperature. Counter electrode: platinum wire. Reference electrode: none. Electrolytes: 0.2 M TBAH in anhydrous DCM (**FeL2-MEPE**) and 1 M LiClO₄ in PC (**FeL3-MEPE**).

Figure S7: *In situ* spectro-electrochemical characterization of **RuL2-MEPE** thin film on FTO coated glass (dimension: 1 cm x 2.5 cm) at various applied voltages at room temperature. Counter electrode: platinum wire. Reference electrode: none. Electrolyte: 0.2 M TBAH in anhydrous DCM.

0 V	2 V	-2.5 V
L* = 56.1	L* = 91.1	L* = 57.2
a* = -11.4	a* = -13.0	a* = -17.4
b* = -24.8	b* = 24.8	b* = -10.9

0 V	1.5 V	-2.5 V
L* = 61.7	L* = 90.4	L* = 59.9
a* = -3.9	a* = -13.1	a* = -20.1
b* = -25.4	b* = 43.2	b* = -4.9

Figure S8: *In situ* spectro-electrochemical characterization of **FeL2-MEPE** (a), **FeL3-MEPE** (b), **CoL2-MEPE** (c), **CoL3-MEPE** (d), and **RuL2-MEPE** (e) thin films on FTO coated glass (dimension: 1 cm x 2.5 cm) at various applied voltages at room temperature (2-electrode setup). Counter electrode: platinum wire. Reference electrode: none. Electrolytes: 0.2 M TBAH in anhydrous DCM (**FeL2-** and **RuL2-MEPE**) and 1 M LiClO₄ in PC (**FeL3-, CoL2-** and **CoL3-MEPE**).

Figure S9: Bleaching/coloring times of **FeL2-MEPE** (a) and **FeL3-MEPE** (b) thin films on FTO coated glass. Counter electrode: platinum wire. Reference electrode: none. Electrolytes: 0.2 M TBAH in anhydrous DCM (**FeL2-MEPE**) and 1 M LiClO₄ in PC (**FeL3-MEPE**).

Figure S10: ¹H NMR spectrum of ligand L1 in CDCl₃.

Figure S11: ¹³C NMR spectrum of ligand L1 in CDCl₃.

Figure S12: ¹H NMR spectrum of ligand L2 in CDCl₃.

Figure S13: ¹H NMR spectrum of ligand L3 in CDCl₃.

Figure S14: ¹³C NMR spectrum of ligand L3 in CDCI₃.