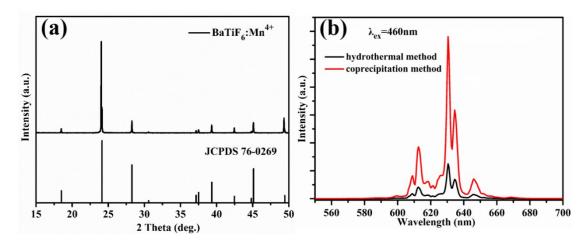
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Supporting Information

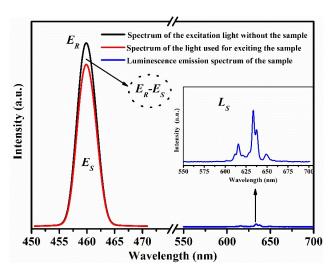
Co-precipitation synthesis and photoluminescence properties of BaTiF₆:Mn⁴⁺: an efficient red phosphor for warm white LEDs

Yong Liu,^a Guojun Gao,^b Lin Huang,^a Yiwen Zhu,^a Xuejie Zhang,^a Jinbo Yu,^a Bryce S. Richards,^{b,c} Tongtong Xuan,^a Zhengliang Wang^{*d} and Jing Wang^{*a}

- ^a Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.


 *E-mail: ceswj@mail.sysu.edu.cn
- b. Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344Eggenstein-Leopoldshafen, Germany
- ^c Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131 Karlsruhe, Germany
- ^d Key Laboratory of Comprehensive Utilization of Mineral Resources in Ethnic Regions, Joint Research Centre for International Cross-border

 Ethnic Regions Biomass Clean Utilization in Yunnan, School of Chemistry & Environment, Yunnan Minzu University, Kunming, 650500, P.


 R. China, *E-mail: wangzhengliang@foxmail.com

Synthesis of BaTiF₆: Mn⁴⁺

The red phosphor $BaTi_{0.97}F_6$: $0.03Mn^{4+}$ samples were synthesized through a hydrothermal route. The specific process is as follows: firstly, 2.5 mmol of TiO_2 , 2.5 mmol of BaF_2 and 0.075 mmol of K_2MnF_6 were added into a solution containing 5 mL of HF (40% wt). secondly, the mixed solution was stirred for 10 min and then transferred into an 10 mL of Teflon lined autoclave. The autoclave was maintained at 120 °C for 15 h. As the autoclave was cooled to room temperature naturally, the final products were washed three times with ethanol. At last, the product was dried at 80 °C for 2 h.

Fig. S1. (a) XRD pattern of the red phosphors $BaTi_{0.97}F_6$:0.03Mn⁴⁺ by hydrothermal method at 150 °C for 12 h and (b) PL (λ_{ex} = 460 nm) spectra of the red phosphors $BaTi_{0.97}F_6$:0.03Mn⁴⁺ by hydrothermal method (black line) and coprecipitation method (red line).

Fig. S2 Spectrum of the excitation light without the BaTi_{0.97}F₆:0.03Mn⁴⁺ sample (E_R), spectrum of the light used for exciting the BaTi_{0.97}F₆:0.03Mn⁴⁺ sample(E_S), luminescence emission spectrum of the BaTi_{0.97}F₆:0.03Mn⁴⁺ sample(E_S), and the inset shows a magnification of the emission spectrum.

Note: QE is defined as the ratio of the number of emitted photons (I_{em}) to the number of absorbed photons (I_{abs}), and can be calculated by the following equation:

$$IQE = \frac{I_{em}}{I_{abs}} = \frac{\int Ls}{\int E_R - \int Es}$$

where E_R is the spectrum of the excitation light without the sample in the sphere, E_S is the spectrum of the light used for exciting the sample, and E_S is the luminescence emission spectrum of the sample.

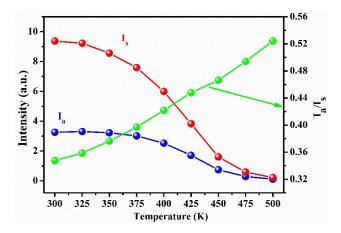


Fig. S3 The temperature-dependent PL intensity of the as-synthesized BaTi_{0.97}F₆:0.03Mn⁴⁺ in the wavelength ranges of 605–623 nm (I_a), and 623–655 nm (I_s).