Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Supporting information

Tuning the organic microcrystals laser wavelength of ESIPT compound

via controlling the excited enol* and keto* emission

Jinbiao Li,^{a,b} Yishi Wu,^a Zhenzhen Xu,^c Qing Liao,^c Haihua Zhang,^{ab} Yi Zhang,^{ab} Lu Xiao,^{ab} Jiannian Yao,^a and Hongbing Fu^{*c,d}

^aBeijing National Laboratory for Molecular Sciences (BNLMS) Institute of chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China ^bGraduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China. ^cBeijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University, Beijing 100048, P.R. China ^dTianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China

*-mail: hbfu@cnu.edu.cn; hongbing.fu@iccas.ac.cn

Experimental Section

Materials: 1-(4-fluoro-2-hydroxyphenyl)ethanone, 4-(dimethylamino)benzaldehyde, ethyl 4-(dimethylamino)benzoate, NaH, NaOH were purchased from Aldrich Chemical Co. and used without further purification. THF, EhOH were common commercial grade and were used as received.

Fug. S1a. Synthetic route of M1.

Fug. S1b. Synthetic route of M2.

(*E*)-3-(4'-Dimethylaminophenyl)-1-(4'-fluoro-2'-hydroxyphenyl)-2-propen-1-one (M**1**): Yield was 38%.1H NMR (400 MHz, CDCl₃, 400MHz,δ):13.60 (d, J = 1.2 Hz, 1H), 13.60 (d, J = 1.2 Hz, 2H), 7.97 – 7.87 (m, 2H), 7.58 (d, J = 8.9 Hz, 2H), 7.37 (d, J = 15.2 Hz, 1H), 6.77 – 6.58 (m, 4H), 3.07 (s, 6H). ¹³C NMR (100 MHz, CD₂Cl₂, δ): 192.48, 166.17, 152.75, 146.81, 131.87, 131.03, 122.17, 117.60, 113.99, 111.91, 106.79, 106.57, 104.90, 104.67, 40.02. MS m/z: [M]+ calcd for C17H16FNO3: 301.18; found: 301.11.

Fig. S2a. ¹H NMR spectra of M1 recorded in CDCl₃(400 MHz).

Fig. S2b. ¹³C NMR spectra of M1 recorded in CD₂Cl₂(400 MHz).

(Z)-3-(4-(dimethylamino)phenyl)-1-(4-fluoro-2-hydroxyphenyl)-3-hydroxyprop-2-en-1-one(M2):Yield was 42%.1H NMR (400 MHz, CD_2Cl_2 , 400MHz, δ):enol tautomer (73%) : 15.74 (1H),12.57 (1H), 7.86 (3H), 6.85(2H),6.71(1H),6.63 (2H), 3.06 (6H); diketone tautomer (27%) : 12.35 (1H), 7.79(3H), 6.63 (4H), 4.49 (2H), 3.06 (6H). 13C NMR (100 MHz, CD_2Cl_2 , δ): 200.64, 192.55, 190.64, 179.07, 168.10, 165.59, 164.61, 164.48, 154.18, 153.75, 134.15, 134.03, 131.06, 130.57, 130.45, 128.94, 119.49, 116.35, 111.34, 110.84, 107.58, 107.35, 107.07, 106.85, 105.85, 105.09, 104.86, 89.47, 49.92, 39.99, 39.95. MS m/z: [M]+ calcd for C17H16FNO2, 285.12; found, 284.98.

Fig. S2c. ¹H NMR spectra of M2 recorded in CD₂Cl₂(400 MHz).

Fig. S2d. ¹³C NMR spectra of M2 recorded in CD₂Cl₂(400 MHz).

Fig.S3. FT-IR spectrum of the M1 and M2 solid form.

Fig.S4. Thermal gravity (TG) and differential scanning calorimetry(DSC) analysis spectrum of the M1 and M2 crystal.

Fig S5. Schematic illustration of (a) the near-field scanning optical microscopy, and (b) the transmittance optical path for the waveguide measurements.

Fig.S6. a) The packing arrangement of M1 molecules in crystals. b) View of the crystal structure of M1 parallel to molecular plan. c) The packing arrangement of M2 molecules in crystals. d) View of the crystal structure of M2 parallel to molecular plan.

We calculated the electric field distribution of our single-crystalline hexagonal-plate microcrystals (HPMCs) microresonator of M1 and M2 by using a finite element (FE) method (COMSOL). The microstructures are on the quartz substrate (nquatz = 1.45). And the refractive index (n_{HPMC}) of HPMC microcrystal is regarded as 1.8.

Fig.S7a. Simulated 2D normalized electric field (λ = 637nm, n= 1.80) of microdisk of M1 (W1 = 6µm, W2 = 4µm.

Fig.S7b. Simulated 2D normalized electric field (V/m, λ = 530nm, n= 1.80) of microdisk of M2 (W1 = 4 µm, W2 = 2.1 µm).

Figure S8. High-resolution PL spectra of laser emission recorded above threshold for three microdisks of a). M1 and b) M2 with different size.

Name	M2		
Identification code	b		
Empirical formula	C17 H16 F N O2		
Formula weight	285.31		
Temperature	173.1500 K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 1 21/c 1		
Unit cell dimensions	a = 12.394(3) Å	⊵α= 90°.	
	b = 10.203(3) Å	⊵β= 115.798(2)°.	
	c = 12.264(3) Å	⊇γ= 90°.	
Volume	1396.4(6) Å ³		
Z	4		
Density (calculated)	1.357 Mg/m ³		
Absorption coefficient	0.098 mm ⁻¹		
F(000)	600		
Crystal size	0.53 x 0.35 x 0.34 mm ³		
Theta range for data collection	2.71 to 27.49°.		
Index ranges	-14<=h<=16, -13<=k<=12, -15<=l<=15		
Reflections collected	10199		
Independent reflections	3164 [R(int) = 0.0223]		
Completeness to theta = 26.000°	99.3 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	1.0000 and 0.8123		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3164 / 0 / 193		
Goodness-of-fit on F ²	1.120		
Final R indices [I>2 sigma(I)]	R1 = 0.0443, wR2 = 0.1053		
R indices (all data)	R1 = 0.0463, wR2 = 0.1065		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.246 and -0.173 e.Å ⁻³		

Table S1. Crystal data and structure refinement for M1 (CCDC no. 1494892)

Hydrogen bonds for M2 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)		
01-H102	0.82	1.77	2.4980(14)	147.6		

•	•			
Name	M2			
Empirical formula	C17 H16 F N O3			
Formula weight	301.31			
Temperature	173.1500 K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P 1 21/n 1			
Unit cell dimensions	a = 11.931(4) Å	⊇ α= 90°.		
	b = 10.515(3) Å	∂β= 117.644(4)°.		
	c = 12.710(5) Å	₽ γ= 90°.		
Volume	1412.5(8) Å ³			
Z	4			
Density (calculated)	1.417 Mg/m ³			
Absorption coefficient	0.106 mm ⁻¹			
F(000)	632			
Crystal size	0.35 x 0.3 x 0.015 mm	3		
Theta range for data collection	2.74 to 27.47°.			
Index ranges	-15<=h<=15, -13<=k<=	-15<=h<=15, -13<=k<=13, -16<=l<=16		
Reflections collected	9391			
Independent reflections	3230 [R(int) = 0.0289]	3230 [R(int) = 0.0289]		
Completeness to theta = 26.000°	99.2 %			
Absorption correction	Semi-empirical from e	Semi-empirical from equivalents		
Max. and min. transmission	1.0000 and 0.8194	1.0000 and 0.8194		
Refinement method	Full-matrix least-squar	Full-matrix least-squares on F ²		
Data / restraints / parameters	3230 / 0 / 209	3230 / 0 / 209		
Goodness-of-fit on F ²	1.176			
Final R indices [I>2sigma(I)]	R1 = 0.0528, wR2 = 0.2	R1 = 0.0528, wR2 = 0.1207		
R indices (all data)	R1 = 0.0568, wR2 = 0.2	R1 = 0.0568, wR2 = 0.1233		
Extinction coefficient	n/a	n/a		
Largest diff. peak and hole	0.235 and -0.191 e.Å ⁻³	0.235 and -0.191 e.Å ⁻³		

Table S2. Crystal data and structure refinement for M2 (CCDC no. 1494891)

Hydrogen bonds for M2 [Å and °].

, , ,	-			
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
01-H102	0.98(3)	1.64(3)	2.5250(18)	147(2)
01-H103#1	0.98(3)	2.55(3)	3.2280(18)	126.1(19)
O3-H3O2	0.94(3)	1.62(3)	2.5012(18)	153(2)