## **Electronic Supplementary Information**

## Thermal behaviour of dicarboxylic ester bithiophene polymers exhibiting a high open-circuit voltage

Ruurd Heuvel, Fallon J. M. Colberts, Martijn M. Wienk, René A. J. Janssen



**Fig. S1** Temperature dependent optical absorption spectra of (a) PDCB-2T-BO and (b) PDCB-TT-EH in oDCB.



**Fig. S2** X-ray diffractograms of drop cast polymer films (a) before and (b) after annealing for 30 min at 150 °C. For PDCB-TT-EH and PDCB-TT-BO lamellar spacing is seen with characteristic distance of 17.2 and 20.0 Å respectively, while for PDCB-TT-HD only a  $\pi$ -stacking reflection 0f 3.58 Å can be seen. The intensities of the reflections increase upon thermal annealing.



**Fig. S3** Optical absorption spectra after thermal annealing of thin pristine films of (a) PDCB-T-BO and (b) PDCB-TT-HD at different temperatures for 10 min.



**Fig. S4** Optical absorption spectra after thermal annealing at different temperatures for 10 min of PC<sub>71</sub>BM blend films with (a) PDCB-T-BO; (b) PDCB-TT-BO; and (c) PDCB-TT-HD.



**Fig. S5** Differential scanning calorimetry traces of PDCB polymers. (a) PDCB-2T and (b) PDCB-2TT. The small bumps seen for the PDCB-TT polymers could not be reproduced in other measurements.

| Polymer    | DPE [vol. %] | J <sub>sc</sub> [mA/cm <sup>2</sup> ] | <i>V</i> <sub>oc</sub> [V] | FF   | PCE [%] |
|------------|--------------|---------------------------------------|----------------------------|------|---------|
| PDCB-T-EH  | 0            | 2.99                                  | 0.97                       | 0.55 | 1.60    |
|            | 1            | 7.13                                  | 0.96                       | 0.70 | 4.78    |
|            | 2            | 7.06                                  | 0.96                       | 0.66 | 4.50    |
|            | 5            | 5.92                                  | 0.93                       | 0.63 | 3.49    |
| PDCB-2T-EH | -            | -                                     | -                          | -    | -       |
| PDCB-TT-EH | -            | -                                     | -                          | -    | -       |
| PDCB-T-BO  | 0            | 2.02                                  | 1.01                       | 0.42 | 0.86    |
|            | 1            | 2.67                                  | 0.99                       | 0.54 | 1.44    |
|            | 2            | 3.26                                  | 0.98                       | 0.58 | 1.85    |
|            | 5            | 3.21                                  | 0.99                       | 0.60 | 1.92    |
| PDCB-2T-BO | 0            | 4.60                                  | 0.82                       | 0.63 | 2.38    |
|            | 1            | 9.88                                  | 0.74                       | 0.71 | 5.19    |
|            | 2            | 9.97                                  | 0.71                       | 0.67 | 4.75    |
|            | 5            | 9.13                                  | 0.70                       | 0.61 | 3.92    |
| PDCB-TT-BO | 0            | 4.31                                  | 0.98                       | 0.53 | 2.24    |
|            | 1            | 6.62                                  | 0.92                       | 0.68 | 4.12    |
|            | 2            | 5.73                                  | 0.87                       | 0.62 | 3.10    |
|            | 5            | 5.51                                  | 0.89                       | 0.63 | 3.07    |
| PDCB-T-HD  | 0            | 0.55                                  | 1.02                       | 0.49 | 0.28    |
|            | 1            | 0.37                                  | 1.02                       | 0.46 | 0.17    |
|            | 2            | 0.26                                  | 1.03                       | 0.40 | 0.11    |
|            | 5            | 0.13                                  | 1.02                       | 0.32 | 0.04    |
| PDCB-2T-HD | 0            | 3.33                                  | 0.82                       | 0.62 | 1.69    |
|            | 1            | 5.77                                  | 0.77                       | 0.65 | 2.89    |
|            | 2            | 8.19                                  | 0.74                       | 0.64 | 3.87    |
|            | 5            | 6.65                                  | 0.71                       | 0.55 | 2.59    |
| PDCB-TT-HD | 0            | 1.78                                  | 0.94                       | 0.56 | 0.94    |
|            | 1            | 4.71                                  | 0.91                       | 0.54 | 2.30    |
|            | 2            | 6.07                                  | 0.87                       | 0.48 | 2.53    |
|            | 5            | 5.13                                  | 0.84                       | 0.43 | 1.87    |

**Table S1** Optimization of photovoltaic devices using a bulk heterojunction active layer blend of PDCB polymers with  $PC_{71}BM$  cast from chloroform with different concentrations of diphenyl ether.



**Fig. S6** EQE spectra of optimized bulk heterojunction solar cells of PDCB-TT-BO after temperature dependent annealing.



**Fig. S7** Bright-field TEM micrographs of optimized, pristine active layer PC<sub>71</sub>BM blends with PDCB polymers (a) T-EH; (b), T-BO; (c), 2T-BO; (d), TT-BO; (e), T-HD; (f) 2T-HD; (g) and TT-HD. Scale bars are 200 nm.



**Fig. S8** Bright-field TEM micrographs of optimized and thermally annealed active layer PC<sub>71</sub>BM blends with PDCB polymers (a) T-EH; (b), T-BO; (c), 2T-BO; (d), TT-BO; (e), T-HD; (f) 2T-HD; (g) and TT-HD. Scale bars are 200 nm.



**Fig. S9** Zoomed in bright-field TEM micrographs of optimized active layer  $PC_{71}BM$  blends with (a) PDCB-T-EH after thermal annealing; (b) PDCB-T-BO after thermal annealing; (c) PDCB-2T-BO (pristine); (d) PDCB-TT-BO (pristine). In each case crystal lattice fringes present in selected areas of the film indicate the semi-crystalline nature of the polymer phase. Scale bars are 100 nm (a-c) and 50 nm (d).



Fig. S10 <sup>1</sup>H NMR spectrum of PDCB-T-EH



Fig. S11 <sup>1</sup>H NMR spectrum of PDCB-T-BO



Fig. S12 <sup>1</sup>H NMR spectrum of PDCB-T-HD



Fig. S13 <sup>1</sup>H NMR spectrum of PDCB-2T-BO



Fig. S14 <sup>1</sup>H NMR spectrum of PDCB-2T-HD



Fig. S15 <sup>1</sup>H NMR spectrum of PDCB-TT-HD