Enhancing photosensitivity of C₆₀ nanorod visible photodetectors by coupling with Cu₂O nanocubes

Baofang Cai, Yanjie Su,* Jing Hu, Cheng Zou, and Yafei Zhang

Key Laboratory for Thin Film and Microfabrication of the Ministry of Education,

Department of Micro/Nano Electronics, School of Electronics, Information and

Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.

1, TEM images of the as-prepared Cu₂O nanocubes

Figure S1 (a) TEM and HRTEM images of the as-synthesized Cu₂O NCs.

2, The absorption spectra of Cu_2O nanocubes

Figure S2 (a) Absorption spectra of Cu₂O nanocubes in different solvents and (b)

plotted curve of $(\alpha hv)^2$ against (hv).

As shown in Figure S2(a), the absorption spectra of Cu₂O nanocubes are different in different solvents. In most relevant works, ethanol is chose as the solvent of absorption spectrum measurement of Cu₂O nanocubes, especially involved in calculation of bandgap. So, in this work, the $(\alpha hv)^2 - hv$ curve of Cu₂O nanocubes (shown in Figure S2(b)) was converted from the absorption spectrum of Cu₂O nanocubes in ethanol.

3, The $(\alpha hv)^2$ - hv curve of pure C₆₀ nanorods

Figure S3 $(\alpha hv)^2$ - *hv* curve of C₆₀ nanorods.

4, LUMO/HOMO measurements

The LUMO and HOMO energy levels of C_{60} NRs and Cu_2O NCs were measured via cyclic voltammetry (CV). A standard three-electrode system was adopted, including a SCE as the reference electrode, a platinum mesh as the counter electrode, and a glassy carbon as the working electrode. The supporting electrolyte is DMF containing 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF₆). The LUMO energy level has been determined using following equation:

$$E_{LUMO}(eV) = -4.8 - (E_{red}^{onset}(vs \ SCE) - E_{Fc/Fc+}(vs \ SCE))$$

Fc/Fc⁺: E_{1/2} vs SCE.

Herein, $E_{1/2}$ is 0.566 V (shown in Figure S3).

The onset reduction potentials of C_{60} NRs and Cu_2O NCs are -0.14V and -0.74V, respectively (shown in Figure S4 and Figure S5). Accordingly, the LUMO energy level of C_{60} NRs and Cu_2O NCs are -4.05 eV and -3.45 eV, respectively.

The HOMO energy level was calculated as follows:

$$E_{HOMO}(eV) = E_{LUMO} - E_{g}$$

The energy of bandgap (E_g) was obtained from absorption spectra. For C_{60} NRs and Cu_2O NCs, E_{HOMO} are -5.89 eV (E_g =1.84 eV ,shown in Figure S2) and -5.55 eV (E_g =2.1 eV ,shown in Figure S1(b)), respectively.

Figure S4. Fc/Fc⁺ is internal reference for the measurements. $E_{1/2}$ is 0.566V for Fc/Fc⁺

Figure S5. CV curve of C_{60} NRs on glassy carbon electrode.

Figure S6. CV curve of Cu₂O NCs on glassy carbon electrode.

5, Performance comparison of the photodetectors

[ab	le	S	1. (Comparison	on the	perf	formance	of t	he re	lated	l pi	hoto	letec	tors
-----	----	---	------	------------	--------	------	----------	------	-------	-------	------	------	-------	------

Active Material	Wavelength	Sensitivity (folds)	t _{rise}	t_{fall}	Year/Ref.	
C ₆₀ -ribbon	UV/Visible	250	500ms	500ms	20131	
Cu ₂ O/ZnO	UV/Visible	25	<100ms	<100ms	2014 ²	
P3HT/CdSe NCs/	UW/Wigible	400	7.5.000		2014 ³	
PbS NCs /C ₆₀ NR	U V/VISIDIE	400	/.31118	-		
C ₆₀ NR/Cu ₂ O NC	Visible	72.5	50ms	10ms	This work	

References:

[1] L. Wei, J. Yao and H. Fu, ACS Nano, 2013, 7, 7573-7582.

[2] X. Liu, H. Du, P. Wang, T. T. Lim and X. W. Sun, J. Mater. Chem. C, 2014, 2, 9536-9542.

[3] R. Saran, V. Stolojan and R. J. Curry, Sci. Rep., 2014, 4, 5041.

To compare the performance of fullerene-based and metal oxides-based photodetectors, some related researches are listed in Table S1. The sensitivity of the C_{60} -ribbon photodetector is outstanding, and the response time may be improved by coupling with photodopants. For the Cu₂O/ZnO photodetector, both sensitivity and response time have potential to be optimized. P3HT/CdSe NC/PbS NC/C₆₀ NR photodetector exhibits ultrahigh photoelectric performance due to the contribution of various photodopants (P3HT, CdSe NCs and PbS NCs) in the C₆₀ NR-based system. Our photodetector has achieved photosensitivity of ~ 72.5 folds under 405 nm light illumination and moderately fast response. Therefore, the C₆₀ NR/Cu₂O NC composite is suitable for detecting visible light signals.